• Title/Summary/Keyword: 도메인 용어

Search Result 58, Processing Time 0.027 seconds

Extracting Domain Related Multi-word Terms using Seeds (시드를 이용한 도메인 관련 복합어 추출 기법)

  • 조성원;최종필;김민구
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.166-168
    • /
    • 2004
  • 복합어 추출 기법은 최근 활발한 연구가 진행되고 있는 온톨로지 구축과 정보 검색에 중요한 기법으로 연구되어 왔다. 초기의 연구는 주로 언어학적인 필터 기법이나 통계적 기법을 사용하였지만, 최근 문맥정보와 의미 사전 등을 이용하여 용어를 추출하는 방법으로 발전해 오고 있다. 또한 정보검색 분야와 온톨로지 분야에서도 모든 용어를 추출하는 방법보다 문서 집합의 도메인에 적합하다고 판단되는 용어들을 추출하는 방법이 그 성능을 향상시킬 수 있다. 본 논문에서는 통계학적 방법을 이용하여 도메인에 적합한 시드 용어의 추출을 하고, 그 시드 용어를 이용해 가중치를 정제하는 방법과 시드 용어로부터 관련된 용어를 추출해 나가는 방법을 적용하여 문서 집합의 도메인에 맞는 용어들을 추출하고자 한다.

  • PDF

Domain-specific Ontology Construction by Terminology Processing (전문용어의 처리에 의한 도메인 온톨로지의 구축)

  • 임수연;송무희;이상조
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.3
    • /
    • pp.353-360
    • /
    • 2004
  • Ontology defines the terms used in a specific domain and the relationships between them and represents them as hierarchical taxonomy. The present paper proposes a semi-automatic domain-specific ontology construction method based on terminology Processing. For this purpose, it presents an algorithm to extract terminology according to the noun/suffix pattern of terminology in domain texts and find their hierarchical structure. The experiment was carried out using pharmacy-related documents. As singleton terminology with noun/suffix were identified, the average accuracy was 92.57%. In case of multi-word terminology, the average accuracy was 66.64%. The constructed ontology forms natural semantic clusters with based on suffices and semantic information, so can be utilized in approaches to specific knowledge such as information look-up or as the base of inference to improve searching abilities.

Evaluation of English Term Extraction based on Inner/Outer Term Statistics

  • Kang, In-Su
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.141-148
    • /
    • 2020
  • Automatic term extraction is to recognize domain-specific terms given a collection of domain-specific text. Previous term extraction methods operate effectively in unsupervised manners which include extracting candidate terms, and assigning importance scores to candidate terms. Regarding the calculation of term importance scores, the study focuses on utilizing sets of inner and outer terms of a candidate term. For a candidate term, its inner terms are shorter terms which belong to the candidate term as components, and its outer terms are longer terms which include the candidate term as their component. This work presents various functions that compute, for a candidate term, term strength from either set of its inner or outer terms. In addition, a scoring method of a term importance is devised based on C-value score and the term strength values obtained from the sets of inner and outer terms. Experimental evaluations using GENIA and ACL RD-TEC 2.0 datasets compare and analyze the effectiveness of the proposed term extraction methods for English. The proposed method performed better than the baseline method by up to 1% and 3% respectively for GENIA and ACL datasets.

Automatic Generating Stopword Methods for Improving Topic Model (토픽모델의 성능 향상을 위한 불용어 자동 생성 기법)

  • Lee, Jung-Been;In, Hoh Peter
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.869-872
    • /
    • 2017
  • 정보검색(Information retrieval) 및 텍스트 분석을 위해 수집하는 비정형 데이터 즉, 자연어를 전처리하는 과정 중 하나인 불용어(Stopword) 제거는 모델의 품질을 높일 수 있는 쉽고, 효과적인 방법 중에 하나이다. 특히 다양한 텍스트 문서에 잠재된 주제를 추출하는 기법인 토픽모델링의 경우, 너무 오래되거나, 수집된 문서의 도메인이나 성격과 무관한 불용어의 제거로 인해, 해당 토픽 모델에서 학습되어 생성된 주제 관련 단어들의 일관성이 떨어지게 된다. 따라서 분석가가 분류된 주제를 올바르게 해석하는데 있어 많은 어려움이 따르게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해 일반적으로 사용되는 표준 불용어 대신 관련 도메인 문서로부터 추출되는 점별 상호정보량(PMI: Pointwise Mutual Information)을 이용하여 불용어를 자동으로 생성해주는 기법을 제안한다. 생성된 불용어와 표준 불용어를 통해 토픽 모델의 품질을 혼잡도(Perplexity)로써 측정한 결과, 본 논문에서 제안한 기법으로 생성한 30개의 불용어가 421개의 표준 불용어보다 더 높은 모델 성능을 보였다.

An Expresson of Domain Searching Term Weight using Fuzzy (퍼지를 이용한 도메인 검색용어 중요성의 표시)

  • Jin, Hyun-Soo;Hong, You-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.139-144
    • /
    • 2009
  • The leveling of technical internet domain term with its aim to accumulate knowledge that machine can comprehend, which has been used widely in recent years. If stratify domain term weight, we believe that machine can manage and analyze in formation on its own using the ontology. In this paper, we propose an algorithm that allows us to extract properties of ontology weight from structured information already existing in web documents. In particular by stratification of the domain knowledge that is composed of property information, we were able to make the algorithm better and improve the quality of extraction results. In our experiments with 50 thousands targeted documents, we were able to extract property information with 94% confidence.

  • PDF

Concept Extraction Technique from Documents Using Domain Ontology (지식 문서에서 도메인 온톨로지를 이용한 개념 추출 기법)

  • Mun Hyeon-Jeong;Woo Yong-Tae
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.309-316
    • /
    • 2006
  • We propose a novel technique to categorize XML documents and extract a concept efficiently using domain ontology. First, we create domain ontology that use text mining technique and statistical technique. We propose a DScore technique to classify XML documents by using the structural characteristic of XML document. We also present TScore technique to extract a concept by comparing the association term set of domain ontology and the terms in the XML document. To verify the efficiency of the proposed technique, we perform experiment for 295 papers in the computer science area. The results of experiment show that the proposed technique using the structural information in the XML documents is more efficient than the existing technique. Especially, the TScore technique effectively extract the concept of documents although frequency of term is few. Hence, the proposed concept-based retrieval techniques can be expected to contribute to the development of an efficient ontology-based knowledge management system.

The Design and Implementation of Automatic Query Term Refiner for Term Expansion/Restriction in Information Retrieval (정보검색에서 질의 용어 확장/한정을 위한 자동 질의 용어 정련기의 설계 및 구현)

  • Kang, Hyun-Su;Kang, Hyun-Kyu;Lee, Yong-Seok;Kim, Young-Sum
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.65-72
    • /
    • 1998
  • 인터넷 정보 검색에서 이용자들이 주로 사용하는 질의는 2-3개의 용어로 이루어진 짧은 질의이다. 또만 동음이의어를 갖는 용어를 사용하기도 한다. 짧은 질의를 처리하는 일반적인 방법은 시소러스[8]나 Wordnet[1]을 이용한 질의 확장이다. 그러나 시소러스나 Wordnet과 같은 지식 베이스는 구축하기가 용이하지 않으며, 도메인 종속적인 면과 단어의 회귀(sparseness) 문제를 극복하기 어려운 단점이 있다. 또한 동음이의어 용어로 인하여 검색의 정확성이 털어지는 문제점이 있다. 한편, 사용자의 질의를 주의 깊게 살펴보면, 질의로부터 관련 용어 분류 정보를 추출할 수 있다. 본 논문은 사용자의 질의가 관련 용어 분류 정보에 의해 유기적으로 관계를 가지고 있다는 사실에 기인하여 관련 용어 분류 정보에 따라 자동으로 용어 확장 및 한정을 수행하며 적절한 용어 가중치를 부여하는 자동 질의 용어 정련기를 제안한다. 자동 질의 용어 정련기는 용어의 확장, 한정 및 가중치 부여를 통하여 사용자의 정보 검색 요구를 명확히 하여 검색의 정확성을 향상시킨다.

  • PDF

Construction of Immunology Thesaurus and Ontology (면역학 시소러스 및 온톨로지 구축)

  • Im, Ji-Hui;Choe, Ho-Seop;Bae, Young-Jun;Ock, Cheol-Young;Choi, Sung-Pil;Sung, Won-Kyung;Park, Dong-In
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.21-27
    • /
    • 2005
  • 본 논문에서는 국가에서 추진하는 차세대신성장동력산업과 관련된 특정 분야('바이오 신약/장기' 분야 중 '면역 기능 제어')를 선택하여, 기구축된 면역학 전문용어사전을 비롯하여 의학용어사전, 표준국어대사전 등을 참조하여 핵심 용어와 관련 용어를 중심으로 면역학 시소러스(어휘 3,462개) 및 온톨로지(개념 노드 4,703개)를 구축하였다. 이것은 전문용어사전부터 온톨로지에 이르기까지 통일화된 표준 체계를 가지고 있으며, 도메인 온톨로지를 구축하여 향후 온톨로지 개발 방향을 설정할 수 있는 계기가 되었다고 할 수 있다. 또한 면역학 시소러스는 검색의 성능을 향상시킬 수 있도록 충분한 양의 데이터를 구축하였고 면역학 온톨로지는 언어처리적 관점에서의 온톨로지를 표현하였다. 이는 정보검색에서의 효율성을 비롯하여, 특정 웹 온톨로지 언어를 이용한 웹 온톨로지로의 변환성, 대규모 도메인 온톨로지라는 점에서 의미를 가진다고 할 수 있다.

  • PDF

An Efficient Text Mining method based on Domain Stopword Elimination (도메인 불용어 제거를 통한 효율적인 텍스트 마이닝 기법)

  • Song, Jae-Sun;Joo, Kil-Hong;Lee, Won-Suk
    • Annual Conference of KIPS
    • /
    • 2003.05c
    • /
    • pp.1523-1526
    • /
    • 2003
  • 정보 검색 분야에서 문서 클러스터링방법은 사용자에게 양질의 다양한 정보를 제공하기 위한 방법으로 이에 대한 많은 연구가 수행되었다. 피러나 기존의 문서클러스터링 방법들은 클러스터간의 포함관계를 나타내는 계층적 관계를 표현하지 않고 의미적으로만 비슷한 내용의 문서를 묶어 여러 개의 클러스터로 나타내었다. 이에 본 논문에서는 각 문서가 속하는 도메인 별로 불용어와 키워드를 추출하여 문서클러스터링에 적용하는 알고리즘을 제안한다.

  • PDF

Domain-Adaptive Pre-training for Korean Document Summarization (도메인 적응 사전 훈련 (Domain-Adaptive Pre-training, DAPT) 한국어 문서 요약)

  • Hyungkuk Jang;Hyuncheol, Jang
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.843-845
    • /
    • 2024
  • 도메인 적응 사전 훈련(Domain-Adaptive Pre-training, DAPT)을 활용한 한국어 문서 요약 연구에서는 특정 도메인의 문서에 대한 이해도와 요약 성능을 향상시키기 위해 DAPT 기법을 적용했다. 이 연구는 사전 훈련된 언어 모델이 일반적인 언어 이해 능력을 넘어 특정 도메인에 최적화된 성능을 발휘할 수 있도록 도메인 특화 데이터셋을 사용하여 추가적인 사전 훈련을 진행한다. 구체적으로, 의료, 법률, 기술 등 다양한 도메인에서 수집한 한국어 텍스트 데이터를 이용하여 모델을 미세 조정하며, 이를 통해 얻은 모델은 도메인에 특화된 용어와 문맥을 효과적으로 처리할 수 있음을 보여준다. 성능 평가에서는 기존 사전 훈련 모델과 DAPT를 적용한 모델을 비교하여 DAPT의 효과를 검증했다. 연구 결과, DAPT를 적용한 모델은 도메인 특화 문서 요약 작업에서 성능 향상을 보였으며, 이는 실제 도메인별 활용에서도 유용할 것으로 기대된다.