• 제목/요약/키워드: 도메인 용어

검색결과 58건 처리시간 0.024초

시드를 이용한 도메인 관련 복합어 추출 기법 (Extracting Domain Related Multi-word Terms using Seeds)

  • 조성원;최종필;김민구
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.166-168
    • /
    • 2004
  • 복합어 추출 기법은 최근 활발한 연구가 진행되고 있는 온톨로지 구축과 정보 검색에 중요한 기법으로 연구되어 왔다. 초기의 연구는 주로 언어학적인 필터 기법이나 통계적 기법을 사용하였지만, 최근 문맥정보와 의미 사전 등을 이용하여 용어를 추출하는 방법으로 발전해 오고 있다. 또한 정보검색 분야와 온톨로지 분야에서도 모든 용어를 추출하는 방법보다 문서 집합의 도메인에 적합하다고 판단되는 용어들을 추출하는 방법이 그 성능을 향상시킬 수 있다. 본 논문에서는 통계학적 방법을 이용하여 도메인에 적합한 시드 용어의 추출을 하고, 그 시드 용어를 이용해 가중치를 정제하는 방법과 시드 용어로부터 관련된 용어를 추출해 나가는 방법을 적용하여 문서 집합의 도메인에 맞는 용어들을 추출하고자 한다.

  • PDF

전문용어의 처리에 의한 도메인 온톨로지의 구축 (Domain-specific Ontology Construction by Terminology Processing)

  • 임수연;송무희;이상조
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.353-360
    • /
    • 2004
  • 온톨로지는 특정 도메인에 사용되는 용어들과 그 용어들 간의 관계를 정의하고, 이를 계층구조로 표현한 것을 말한다. 본 논문에서는 전문용어의 처리에 기반 한 도메인 특정적인 온톨로지의 반자동 구축방안을 제안하고자 한다. 이를 위하여 도메인 텍스트 내에서 전문용어를 구성하고 있는 명사나 접미사의 패턴을 분류하고, 이에 따라 전문용어를 추출하고 계층구조를 구하는 알고리즘을 제안한다. 실험은 약학 관련 문서를 대상으로 하였으며, 단일어절 전문용어를 인식한 결과 평균 92.57%, 다중어절 전문용어의 경우 평균 66.64%의 정확도를 보였다. 구축된 온톨로지는 의미정보와 함께 전문용어를 구성하는 특정 명사나 접미사를 중심으로 자연스런 의미 군을 형성함으로써 정보검색 등의 전문적인 지식의 접근에 유용하게 쓰일 수 있으며, 검색의 성능을 향상시키기 위한 추론의 기반으로도 이용할 수 있다.

Evaluation of English Term Extraction based on Inner/Outer Term Statistics

  • Kang, In-Su
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권4호
    • /
    • pp.141-148
    • /
    • 2020
  • 용어추출은 도메인 텍스트 모음으로부터 도메인 용어 목록을 인식하는 작업이다. 용어추출의 기존 효과적인 방법들은 비교사 방식으로 동작하며, 후보 용어 집합을 추출하는 작업과 후보 용어에 용어중요도를 할당하는 작업을 주요 단계로 포함한다. 후보 용어의 용어중요도 계산과 관련하여 본 논문에서는 후보 용어의 내부 및 외부용어집합을 활용한다. 내부용어집합은 후보 용어에 포함된 다른 짧은 용어들의 집합이며, 외부용어집합은 후보 용어가 포함된 다른 긴 용어들의 집합이다. 본 논문에서는 후보 용어의 내부 혹은 외부용어집합으로부터 후보 용어의 용어 강도를 계산하는 다양한 강도 함수들을 제시하고, 이들 용어 강도 값들과 C-value 점수를 결합하는 용어중요도 계산 방법을 소개한다. 생물학 및 전산언어학 분야 영어 데이터셋을 사용한 성능 평가에서는 제안된 방법의 용어추출 성능을 비교하고 분석한다. 제안된 방법은 생물학 및 전산언어학 분야 데이터셋에 대해 각각 최대 1%와 3% 차이의 성능 향상을 보였다.

토픽모델의 성능 향상을 위한 불용어 자동 생성 기법 (Automatic Generating Stopword Methods for Improving Topic Model)

  • 이정빈;인호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.869-872
    • /
    • 2017
  • 정보검색(Information retrieval) 및 텍스트 분석을 위해 수집하는 비정형 데이터 즉, 자연어를 전처리하는 과정 중 하나인 불용어(Stopword) 제거는 모델의 품질을 높일 수 있는 쉽고, 효과적인 방법 중에 하나이다. 특히 다양한 텍스트 문서에 잠재된 주제를 추출하는 기법인 토픽모델링의 경우, 너무 오래되거나, 수집된 문서의 도메인이나 성격과 무관한 불용어의 제거로 인해, 해당 토픽 모델에서 학습되어 생성된 주제 관련 단어들의 일관성이 떨어지게 된다. 따라서 분석가가 분류된 주제를 올바르게 해석하는데 있어 많은 어려움이 따르게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해 일반적으로 사용되는 표준 불용어 대신 관련 도메인 문서로부터 추출되는 점별 상호정보량(PMI: Pointwise Mutual Information)을 이용하여 불용어를 자동으로 생성해주는 기법을 제안한다. 생성된 불용어와 표준 불용어를 통해 토픽 모델의 품질을 혼잡도(Perplexity)로써 측정한 결과, 본 논문에서 제안한 기법으로 생성한 30개의 불용어가 421개의 표준 불용어보다 더 높은 모델 성능을 보였다.

퍼지를 이용한 도메인 검색용어 중요성의 표시 (An Expresson of Domain Searching Term Weight using Fuzzy)

  • 진현수;홍유식
    • 한국인터넷방송통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.139-144
    • /
    • 2009
  • 최근의 여러분야에서 검색되어지고 있는 인터넷 도메인 용어의 전문성의 표시화는 온톨리지를 통한 지식의 축적의 목표가 되고 있다. 도메인 용어의 중요성을 표시화 한다면 기계가 온톨리지를 이용하여 정보의 관리 및 해석을 스스로 하는 것이 가능할 것으로 본다. 본 논문에서는 온톨로지의 중요성 (weight)을 구성하는 속성을 확장된 퍼지를 사용하여 기존 웹문서의 구조정보로부터 추출하는 알고리즘을 제안하였다. 특히 속성정보로 구성된 도메인 지식을 표시화 함으로써 속성추출 알고리즘을 개선하고, 추출결과의 품질을 향상시킨다. 5만문서를 대상으로 제안된 알고리즘을 적용한 결과 약 94%의 신뢰도의 속성정보를 추출할 수 있었다.

  • PDF

지식 문서에서 도메인 온톨로지를 이용한 개념 추출 기법 (Concept Extraction Technique from Documents Using Domain Ontology)

  • 문현정;우용태
    • 정보처리학회논문지D
    • /
    • 제13D권3호
    • /
    • pp.309-316
    • /
    • 2006
  • 본 논문에서는 도메인 온톨로지를 이용하여 XML 형식의 지식 문서를 분류하고 대표 개념을 효과적으로 추출하기 위한 기법을 제시하였다. 먼저, 도메인 온톨로지는 텍스트마이닝 기법과 통계적 기법을 이용하여 생성하였다. 이를 위해 XML 문서의 구조적인 특징을 이용하여 도메인 대표용어 집합을 구성하였다. 그리고 XML 문서를 효과적으로 분류하기 위한 DScore 기법과 지식 문서로부터 개념을 추출하기 위한 TScore 기법을 제시하였다. 본 논문에서 제안한 기법의 효율성을 검증하기 위하여 295편의 컴퓨터 관련 논문을 대상으로 실험하였다. 실험 결과, 본 연구에서 제안한 도메인 대표 용어 집합을 이용한 분류 결과가 기존의 방법보다 우수한 성능을 보였다. 특히 TScore기법에서는 문서에서 출현한 용어의 빈도수는 낮더라도 문서의 개념을 대표할 수 있는 용어를 효과적으로 추출할 수 있음을 보였다. 본 연구는 개념 기반의 검색 기법을 통하여 대량의 지식 문서를 효과적으로 관리하기 위한 지식 관리 모델에 적용할 수 있다.

정보검색에서 질의 용어 확장/한정을 위한 자동 질의 용어 정련기의 설계 및 구현 (The Design and Implementation of Automatic Query Term Refiner for Term Expansion/Restriction in Information Retrieval)

  • 강현수;강현규;이용석;김영섬
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1998년도 제10회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.65-72
    • /
    • 1998
  • 인터넷 정보 검색에서 이용자들이 주로 사용하는 질의는 2-3개의 용어로 이루어진 짧은 질의이다. 또만 동음이의어를 갖는 용어를 사용하기도 한다. 짧은 질의를 처리하는 일반적인 방법은 시소러스[8]나 Wordnet[1]을 이용한 질의 확장이다. 그러나 시소러스나 Wordnet과 같은 지식 베이스는 구축하기가 용이하지 않으며, 도메인 종속적인 면과 단어의 회귀(sparseness) 문제를 극복하기 어려운 단점이 있다. 또한 동음이의어 용어로 인하여 검색의 정확성이 털어지는 문제점이 있다. 한편, 사용자의 질의를 주의 깊게 살펴보면, 질의로부터 관련 용어 분류 정보를 추출할 수 있다. 본 논문은 사용자의 질의가 관련 용어 분류 정보에 의해 유기적으로 관계를 가지고 있다는 사실에 기인하여 관련 용어 분류 정보에 따라 자동으로 용어 확장 및 한정을 수행하며 적절한 용어 가중치를 부여하는 자동 질의 용어 정련기를 제안한다. 자동 질의 용어 정련기는 용어의 확장, 한정 및 가중치 부여를 통하여 사용자의 정보 검색 요구를 명확히 하여 검색의 정확성을 향상시킨다.

  • PDF

면역학 시소러스 및 온톨로지 구축 (Construction of Immunology Thesaurus and Ontology)

  • 임지희;최호섭;배영준;옥철영;최성필;성원경;박동인
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2005년도 제17회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.21-27
    • /
    • 2005
  • 본 논문에서는 국가에서 추진하는 차세대신성장동력산업과 관련된 특정 분야('바이오 신약/장기' 분야 중 '면역 기능 제어')를 선택하여, 기구축된 면역학 전문용어사전을 비롯하여 의학용어사전, 표준국어대사전 등을 참조하여 핵심 용어와 관련 용어를 중심으로 면역학 시소러스(어휘 3,462개) 및 온톨로지(개념 노드 4,703개)를 구축하였다. 이것은 전문용어사전부터 온톨로지에 이르기까지 통일화된 표준 체계를 가지고 있으며, 도메인 온톨로지를 구축하여 향후 온톨로지 개발 방향을 설정할 수 있는 계기가 되었다고 할 수 있다. 또한 면역학 시소러스는 검색의 성능을 향상시킬 수 있도록 충분한 양의 데이터를 구축하였고 면역학 온톨로지는 언어처리적 관점에서의 온톨로지를 표현하였다. 이는 정보검색에서의 효율성을 비롯하여, 특정 웹 온톨로지 언어를 이용한 웹 온톨로지로의 변환성, 대규모 도메인 온톨로지라는 점에서 의미를 가진다고 할 수 있다.

  • PDF

도메인 불용어 제거를 통한 효율적인 텍스트 마이닝 기법 (An Efficient Text Mining method based on Domain Stopword Elimination)

  • 송재선;주길홍;이원석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2003년도 춘계학술발표논문집 (하)
    • /
    • pp.1523-1526
    • /
    • 2003
  • 정보 검색 분야에서 문서 클러스터링방법은 사용자에게 양질의 다양한 정보를 제공하기 위한 방법으로 이에 대한 많은 연구가 수행되었다. 피러나 기존의 문서클러스터링 방법들은 클러스터간의 포함관계를 나타내는 계층적 관계를 표현하지 않고 의미적으로만 비슷한 내용의 문서를 묶어 여러 개의 클러스터로 나타내었다. 이에 본 논문에서는 각 문서가 속하는 도메인 별로 불용어와 키워드를 추출하여 문서클러스터링에 적용하는 알고리즘을 제안한다.

  • PDF

도메인 적응 사전 훈련 (Domain-Adaptive Pre-training, DAPT) 한국어 문서 요약 (Domain-Adaptive Pre-training for Korean Document Summarization)

  • 장형국;장현철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.843-845
    • /
    • 2024
  • 도메인 적응 사전 훈련(Domain-Adaptive Pre-training, DAPT)을 활용한 한국어 문서 요약 연구에서는 특정 도메인의 문서에 대한 이해도와 요약 성능을 향상시키기 위해 DAPT 기법을 적용했다. 이 연구는 사전 훈련된 언어 모델이 일반적인 언어 이해 능력을 넘어 특정 도메인에 최적화된 성능을 발휘할 수 있도록 도메인 특화 데이터셋을 사용하여 추가적인 사전 훈련을 진행한다. 구체적으로, 의료, 법률, 기술 등 다양한 도메인에서 수집한 한국어 텍스트 데이터를 이용하여 모델을 미세 조정하며, 이를 통해 얻은 모델은 도메인에 특화된 용어와 문맥을 효과적으로 처리할 수 있음을 보여준다. 성능 평가에서는 기존 사전 훈련 모델과 DAPT를 적용한 모델을 비교하여 DAPT의 효과를 검증했다. 연구 결과, DAPT를 적용한 모델은 도메인 특화 문서 요약 작업에서 성능 향상을 보였으며, 이는 실제 도메인별 활용에서도 유용할 것으로 기대된다.