• Title/Summary/Keyword: 도로 주행

Search Result 1,526, Processing Time 0.029 seconds

Analysis of the Effects of the Truck Platooning Using a Meta-analysis (메타분석을 이용한 화물차 군집주행의 효과 분석)

  • Kim, Yejin;Jeong, Harim;Ko, Woori;Park, Joong-gyu;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.76-90
    • /
    • 2022
  • The platooning refers to a form in which one or more following vehicles along the path of the leading vehicle(directly driven by the driver) drive in one platoon using V2V, V2I communication and vehicle-mounted sensor. Platooning has emerged in line with the increasing demand for cargo volume and advanced transportation logistics systems, and is expected to have effects such as increasing capacity, reducing labor costs, and reducing fuel consumption. However, compared to general passenger cars, research on autonomous driving of trucks and verification of their effects are insufficient. Therefore, in this study, meta-analysis was conducted on the theme of the effect of truck platooning, and the results of existing studies related to platooning effects were integrated into one reliable, generalized, and objective summary estimate. In conclusion, it was analyzed that the introduction of truck platooning would have an effect of 13.93% increase in capacity, 38.76% decrease in conflict, and 8.13% decrease in fuel consumption.

A Study on the Analysis of Bridge Safety by Truck Platooning (차량 군집 주행에 따른 교량 안전성 분석에 관한 연구 )

  • Sangwon Park;Minwoo Chang;Dukgeun Yun;Minhyung No
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.50-57
    • /
    • 2023
  • Autonomous driving technologies have been gradually improved for road traffic owing to the development of artificial intelligence. Since the truck platooning is beneficial in terms of the associated transporting expenses, the Connected-Automated Vehicle technology is rapidly evolving. The structural performance is, however, rarely investigated to capture the effect of truck platooning on civil infrastructures.In this study, the dynamic behavior of bridges under truck platooning was investigated, and the amplification factor of responses was estimated considering several parameters associated with the driving conditions. Artificial intelligence techniques were used to estimate the maximum response of the mid span of a bridge as the platooning vehicles passing, and the importance of the parameters was evaluated. The most suitable algorithm was selected by evaluating the consistency of the estimated displacement.

The recognition prioritization of road environment for supporting autonomous vehicle (자율주행차량의 도로환경 인식기술 지원을 위한 우선순위 선정 방안)

  • Park, Jaehong;Yun, Duk Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.595-601
    • /
    • 2018
  • The era of autonomous vehicles, which drive themselves and in whose operation the driver does not intervene, is fast approaching. The safety of autonomous vehicles can be guaranteed only if they recognize the road infrastructure. However, the road infrastructure consists of road safety facilities, traffic operation systems, and cross-sectional concerns, which include a variety of components, such as types, shapes, and sizes. Therefore, it is necessary to prioritize the road information. This study was conducted to select the priority with which the road infrastructure attributes should be acquired using the AHP (Analytical Hierarchy Process) method. The road infrastructure attributes were categorized into 2 levels, levels 1 and 2, which consisted of 3 and 26 types of attributes, respectively. As a result of the AHP analysis, it was found that the highest priorities of the road infrastructure are the road safety facilities, traffic operation systems and cross sectional concerns. Also, in level-2, the priorities of the safety barriers (road safety facilities), traffic signals (traffic operation systems), and the median (cross sectional) are the highest. Also, this study provides application examples of road infrastructure extraction with the Point Cloud. The results are expected to support the recognition of technology for autonomous vehicles.

A Need of Management of Horizontal Alignment Design at Rural Roads (지방부 도로에서 평면선형 설계관리의 필요성)

  • Kim, Yong-Seok;Cho, Won-Bum
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.25-31
    • /
    • 2010
  • Road design guideline provides the directions on how to design a road alignment based on design speed, and this guideline has a design expectation in that design speed is supposed to be equal to the operating speed of drivers. Horizontal curve design is also based on design speed, and minimum radius is derived based on the drivers comfort while negotiating the curve. However, side friction reflecting drivers comfort is lower than a physical friction measured on wet road surface, therefore, it is reasonable to regard the criterion on minimum radius has a safety margin. Futhermore, the practical preference of choosing the larger radius than minimum leads to a noticeable gap between design speed and operating speed, so links to the violation of design expectation implicated in the guideline. In order to review this assumption, friction and operating speed at rural roads was measured and observed. As the results, a safety margin brought out by the gap between comfort-based friction and measured friction is qualitatively derived. Also, the gap between design speed and operating speed presumably caused by the safety margin and practical preference is analysed. By this, it is suggested that current design guideline should provides not only the minimum radius but also the management of road alignment design to minimize the gap between the design speed and operating speed.

Technological Development Trends for Self-driving Cars (자율주행 자동차 기술개발 동향)

  • Kim, Min-joon;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.246-248
    • /
    • 2017
  • Self-driving cars have three main functions. The first recognizes the surrounding environment, judge the risk, and lastly plans the drive path. Therefore, the driving operation is minimized. And it refers to a human friendly car capable of safe driving on its own. The reason for the need for self-driving car was to reduce traffic jams on limited roads and to reduce carbon dioxide emissions. Driving ahead of these self-driving car businesses can be expected to attract and expand the existing business and expand the new business and create new business opportunities for ICT firms. It is urgent for the concerned agencies to establish legal and institutional basis for self-driving cars. By doing so, new services could be provided to consumers. Therefore, this paper introduces the technological development trends for self-driving cars.

  • PDF

Driving Simulation after Road Design by 3D-GIS in Digital Elevation Model from Digital Aerial Photogrammetry (수치항공사진에서 생성된 수치표고모형에서 3차원 GIS를 이용한 도로설계와 모의주행)

  • Choi, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.1
    • /
    • pp.143-148
    • /
    • 2008
  • This Study is about driving simulation after road design by 3D-GIS in digital elevation model from digital aerial photogrammetry. For designing roads efficiently it's very important to consider geographical features before design when analyze the view. Nevertheless, existing studies is mainly restricted in the mountainous, despite of using digital map or aerial photogrammetry and the study which used aerial photo in the area where the road designing is made really is not get executed. Therefore, this study will do 3D-road design and driving simulation by appling really road design data to topography, on the basis of digital elevation generated from aerial photogrammetry.

A Study on the Recognition of the Road Traffic Information Board using Hough Transform and Genetic Algorithm (하프변환과 유전자 알고리즘을 이용한 도로정보 표지판 인식에 관한 연구)

  • 정진용;정채영
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.2
    • /
    • pp.95-104
    • /
    • 1999
  • With the increasing of cars, general studies of them for the traffic safety have been raised as important problems. Visual system to radio-controled driving is to sample road traffic information as reconstructing a model from lots of road traffic information which is successively input in order to drive on unknown road. This paper proposes a sampling process of the road traffic information board needed in automatic driving under automatic drive system using Hough Transform and Genetic Alorithm.

  • PDF

Analysis of Anxiety EGG per Driving Speed on Different Design Speed Road (상이한 설계속도 도로에서의 주행속도별 불안뇌파 분석)

  • Lim, Joon Beom;Lee, Soo Beom;Joo, Sung Kab;Shin, Joon Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2049-2056
    • /
    • 2013
  • With the advance in information communication, the information age has come, and desire of human being in increasing. In this circumstance, the necessity for design for building of superhighways is arising to improve the mobility in the field of transportation, too. This study was conducted to analyze if driver can drive at a design speed on a superhighway with a design speed exceeding 120km/h. For this study, it was experimented if the running speed that makes a driver feel anxious, increased, when road alignment and standard improved, due to the differences of design speed. For the experiment, 30 subjects were asked to attach brain wave analyzers to bodies. Then, this study compared powers of ${\beta}$ waves generated, when they felt anxious, driving on the roads with different design speeds, and driving virtually through a simulator. Here, Kangbyeonbukro (90km/h), Jayuro(100km/h), Joongang Expressway(110km/h), and Seohaean Expressway(120km/h) were selected as experimental sections. While drivers drove on the Kangbyeonbukro and Jayuro at a speed of 80km/h - 130km/h, on the Joongang Expressway at a speed of 100km/h - 150km/h, and Seohaean Expressway at a speed of 110km/h - 180km/h, powers of anxiety EEGs(electroencephalogram) were compared, and during the simulation driving at the same speed of 110km/h - 180km/h, powers of anxiety EEGs were compared and analyzed. Moreover, the speed when anxiety EEGs increased, was statistically verified through paired t-test. As the result, the speed when anxiety EEGs increased during the simulation driving was nearly 30km/h higher than when they increased during the actual driving on the expressways, and anxiety EEGs increased at the same speed, when subjects drove on the roads with a design speed of 90km/h and 100km/h. It means that there were small differences in road alignment and standard. However, the running speed to make drivers feel anxious was increased at both roads with a design speed of 110km/h and 120km/h. It implies that drivers can drive at a higher speed, as road alignment and standard improve.