• Title/Summary/Keyword: 도로 벡터

Search Result 1,022, Processing Time 0.027 seconds

Research on Pilot Decision Model for the Fast-Time Simulation of UAS Operation (무인항공기 운항의 배속 시뮬레이션을 위한 조종사 의사결정 모델 연구)

  • Park, Seung-Hyun;Lee, Hyeonwoong;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Detect and avoid (DAA) system, which is essential for the operation of UAS, detects intruding aircraft and offers the ranges of turn and climb/descent maneuver that are required to avoid the intruder. This paper uses detect and avoid alerting logic for unmanned systems (DAIDALUS) developed at NASA as a DAA algorithm. Since DAIDALUS offers ranges of avoidance maneuvers, the actual avoidance maneuver must be decided by the UAS pilot as well as the timing and method of returning to the original route. It can be readily used in real-time human-in-the-loop (HiTL) simulations where a human pilot is making the decision, but a pilot decision model is required in fast-time simulations that proceed without human pilot intervention. This paper proposes a pilot decision model that maneuvers the aircraft based on the DAIDALUS avoidance maneuver range. A series of tests were conducted using test vectors from radio technical commission for aeronautics (RTCA) minimum operational performance standards (MOPS). The alert levels differed by the types of encounters, but loss of well clear (LoWC) was avoided. This model will be useful in fast-time simulation of high-volume traffic involving UAS.

Improved Estimation of Hourly Surface Ozone Concentrations using Stacking Ensemble-based Spatial Interpolation (스태킹 앙상블 모델을 이용한 시간별 지상 오존 공간내삽 정확도 향상)

  • KIM, Ye-Jin;KANG, Eun-Jin;CHO, Dong-Jin;LEE, Si-Woo;IM, Jung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.3
    • /
    • pp.74-99
    • /
    • 2022
  • Surface ozone is produced by photochemical reactions of nitrogen oxides(NOx) and volatile organic compounds(VOCs) emitted from vehicles and industrial sites, adversely affecting vegetation and the human body. In South Korea, ozone is monitored in real-time at stations(i.e., point measurements), but it is difficult to monitor and analyze its continuous spatial distribution. In this study, surface ozone concentrations were interpolated to have a spatial resolution of 1.5km every hour using the stacking ensemble technique, followed by a 5-fold cross-validation. Base models for the stacking ensemble were cokriging, multi-linear regression(MLR), random forest(RF), and support vector regression(SVR), while MLR was used as the meta model, having all base model results as additional input variables. The results showed that the stacking ensemble model yielded the better performance than the individual base models, resulting in an averaged R of 0.76 and RMSE of 0.0065ppm during the study period of 2020. The surface ozone concentration distribution generated by the stacking ensemble model had a wider range with a spatial pattern similar with terrain and urbanization variables, compared to those by the base models. Not only should the proposed model be capable of producing the hourly spatial distribution of ozone, but it should also be highly applicable for calculating the daily maximum 8-hour ozone concentrations.

Development of an Intelligent Illegal Gambling Site Detection Model Based on Tag2Vec (Tag2vec 기반의 지능형 불법 도박 사이트 탐지 모형 개발)

  • Song, ChanWoo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.211-227
    • /
    • 2022
  • Illegal gambling through online gambling sites has become a significant social problem. The development of Internet technology and the spread of smartphones have led to the proliferation of illegal gambling sites, so now illegal online gambling has become accessible to anyone. In order to mitigate its negative effect, the Korean government is trying to detect illegal gambling sites by using self-monitoring agents or reporting systems such as 'Nuricops.' However, it is difficult to detect all illegal sites due to limitations such as a lack of staffing. Accordingly, several scholars have proposed intelligent illegal gambling site detection techniques. Xu et al. (2019) found that fake or illegal websites generally have unique features in the HTML tag structure. It implies that the HTML tag structure can be important for detecting illegal sites. However, prior studies to improve the model's performance by utilizing the HTML tag structure in the illegal site detection model are rare. Against this background, our study aimed to improve the model's performance by utilizing the HTML tag structure and proposes Tag2Vec, a modified version of Doc2Vec, as a methodology to vectorize the HTML tag structure properly. To validate the proposed model, we perform the empirical analysis using a data set consisting of the list of harmful sites from 'The Cheat' and normal sites through Google search. As a result, it was confirmed that the Tag2Vec-based detection model proposed in this study showed better classification accuracy, recall, and F1_Score than the URL-based detection model-a comparative model. The proposed model of this study is expected to be effectively utilized to improve the health of our society through intelligent technology.

Developing a New Algorithm for Conversational Agent to Detect Recognition Error and Neologism Meaning: Utilizing Korean Syllable-based Word Similarity (대화형 에이전트 인식오류 및 신조어 탐지를 위한 알고리즘 개발: 한글 음절 분리 기반의 단어 유사도 활용)

  • Jung-Won Lee;Il Im
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.267-286
    • /
    • 2023
  • The conversational agents such as AI speakers utilize voice conversation for human-computer interaction. Voice recognition errors often occur in conversational situations. Recognition errors in user utterance records can be categorized into two types. The first type is misrecognition errors, where the agent fails to recognize the user's speech entirely. The second type is misinterpretation errors, where the user's speech is recognized and services are provided, but the interpretation differs from the user's intention. Among these, misinterpretation errors require separate error detection as they are recorded as successful service interactions. In this study, various text separation methods were applied to detect misinterpretation. For each of these text separation methods, the similarity of consecutive speech pairs using word embedding and document embedding techniques, which convert words and documents into vectors. This approach goes beyond simple word-based similarity calculation to explore a new method for detecting misinterpretation errors. The research method involved utilizing real user utterance records to train and develop a detection model by applying patterns of misinterpretation error causes. The results revealed that the most significant analysis result was obtained through initial consonant extraction for detecting misinterpretation errors caused by the use of unregistered neologisms. Through comparison with other separation methods, different error types could be observed. This study has two main implications. First, for misinterpretation errors that are difficult to detect due to lack of recognition, the study proposed diverse text separation methods and found a novel method that improved performance remarkably. Second, if this is applied to conversational agents or voice recognition services requiring neologism detection, patterns of errors occurring from the voice recognition stage can be specified. The study proposed and verified that even if not categorized as errors, services can be provided according to user-desired results.

Behavior of Closely-Spaced Tunnel According to Separation Distance Using Scaled Model Tests (축소모형실험을 통한 이격거리에 따른 근접터널의 거동)

  • Ahn, Hyun-Ho;Choi, Jung-In;Shim, Seong-Hyeon;Lee, Seok-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.7
    • /
    • pp.5-16
    • /
    • 2008
  • Most of roadway tunnels have been constructed in the form of parallel twin tunnel in Korea. If parallel twin tunnel does not have a sufficient separation distance between tunnels, the problem of tunnel stability can occur. Generally, it is reported that tunnels are not influenced by each other when a center distance between tunnels is two times longer than tunnel diameter under the complete elastic ground and five times under the soft ground. In this study, the scaled model tests of closely-spaced parallel twin tunnel using homogeneous material are performed and induced displacements are measured around the tunnel openings during excavation. The influence of separation distance between tunnels on the behavior of closely-spaced tunnel is investigated. The experimental results are expressed by the induced displacement vector and progress of crack during construction and at failure. The results show that based on the analysis of induced displacement at the crown during construction, the additional displacement of the preceding tunnel induced by the excavation of following tunnel decreases as the separation distance between twin tunnel increases until the center to center distance is two times of tunnel diameter. Beyond this point, however, the additional displacement has become stabilized.

A Study on the Characteristics of Global FDI on China's Balanced Development Strategy : Focusing on Korean FDI Characteristics by Major Cities in China (중국지역균형발전전략에 미치는 글로벌 FDI 특성에 관한 연구 :중국주요도시별 한국FDI 특성을 중심으로)

  • Ryoo, Sung-Woo;Mun, Cheol-Ju
    • Korea Trade Review
    • /
    • v.43 no.4
    • /
    • pp.155-175
    • /
    • 2018
  • This study estimates the technical efficiency and total factor productivity(TFP) of and analyzes the relationship between TFP and exports for Korean manufacturing companies from 2000 to 2016. Specially, TFP is decomposed into Technical Change(TC), Technical Efficiency Change (TEC), and Sale Effect(SE), and compared between large and small enterprises. First, in the case of technical efficiency, the Korean economy has been very vulnerable to external shocks, such as the sharp decline following the 2008 financial crisis. The efficiency of the electronics, automobile, and machinery sectors is low and needs to be improved. In addition, the technological efficiency of large enterprises is higher than that of SMEs in most manufacturing sub-sectors except for non-ferrous metals. In the case of TFP, most changes are due to TC, and the effective combination of labor, capital and the effect of scale have little effect, suggesting that improvement of internal structure is urgent. In addition, volatility due to the impact of the financial crisis in 2008 was much larger in SMEs than in large companies, so external economic impacts are more greater for SMEs than large enterprises. The relationship between TFP decomposition factors and exports shows that TC has a positive effect only on exports of SMEs. Therefore, in order to increase exports, in the case of SMEs, R&D support to promote technological development is needed. In the case of large companies, it is necessary to establish differentiated strategies for each export market, competitor company, and item to link efficiency and scale effect of exports.

  • PDF

Predicting the Fetotoxicity of Drugs Using Machine Learning (기계학습 기반 약물의 태아 독성 예측 연구)

  • Myeonghyeon Jeong;Sunyong Yoo
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.490-497
    • /
    • 2023
  • Pregnant women may need to take medications to treat preexisting diseases or diseases that develop during pregnancy. However, some drugs may be fetotoxic and lead to, for example, teratogenicity and growth retardation. Predicting the fetotoxicity of drugs is thus important for the health of the mother and fetus. The fetotoxicity of many drugs has not been established because various challenges hinder the ability of researchers to determine their fetotoxicity. The need exists for in silico-based fetotoxicity assessment models, as they can modernize the testing paradigm, improve predictability, and reduce the use of animals and the costs of fetotoxicity testing. In this study, we collected data on the fetotoxicity of drugs and constructed fetotoxicity prediction models based on various machine learning algorithms. We optimized the models for more precise predictions by tuning the hyperparameters. We then performed quantitative performance evaluations. The results indicated that the constructed machine learning-based models had high performance (AUROC >0.85, AUPR >0.9) in fetotoxicity prediction. We also analyzed the feature importance of our model's predictions, which could be leveraged to identify the specific features of drugs that are strongly associated with fetotoxicity. The proposed model can be used to prescreen drugs and drug candidates at a lower cost and in less time. It provides a predictive score for fetotoxicity risk, which may be beneficial in the design of studies on fetotoxicity in human pregnancy.

Vehicle-Bridge Interaction Analysis of Railway Bridges by Using Conventional Trains (기존선 철도차량을 이용한 철도교의 상호작용해석)

  • Cho, Eun Sang;Kim, Hee Ju;Hwang, Won Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.31-43
    • /
    • 2009
  • In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations of motion. The coupled equations of motion for the vehicle-bridge interaction are solved by the Newmark ${\beta}$ of a direct integration method, and by composing the effective stiffness matrix and the effective force vector according to a analysis step, those can be solved with the same manner of the solving procedure of equilibrium equations in static analysis. Also, the effective stiffness matrix is reconstructed by the Skyline method for increasing the analysis effectiveness. The Cholesky's matrix decomposition scheme is applied to the analysis procedure for minimizing the numerical errors that can be generated in directly calculating the inverse matrix. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 16 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by the PSD functions of the Federal Railroad Administration (FRA). The results of the vehicle-bridge interaction analysis are verified by the experimental results for the railway plate girder bridges of a span length with 12 m, 18 m, and the experimental and analytical data are applied to the low pass filtering scheme, and the basis frequency of the filtering is a 2 times of the 1st fundamental frequency of a bridge bending.

Study on Predicting the Designation of Administrative Issue in the KOSDAQ Market Based on Machine Learning Based on Financial Data (머신러닝 기반 KOSDAQ 시장의 관리종목 지정 예측 연구: 재무적 데이터를 중심으로)

  • Yoon, Yanghyun;Kim, Taekyung;Kim, Suyeong
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.229-249
    • /
    • 2022
  • This paper investigates machine learning models for predicting the designation of administrative issues in the KOSDAQ market through various techniques. When a company in the Korean stock market is designated as administrative issue, the market recognizes the event itself as negative information, causing losses to the company and investors. The purpose of this study is to evaluate alternative methods for developing a artificial intelligence service to examine a possibility to the designation of administrative issues early through the financial ratio of companies and to help investors manage portfolio risks. In this study, the independent variables used 21 financial ratios representing profitability, stability, activity, and growth. From 2011 to 2020, when K-IFRS was applied, financial data of companies in administrative issues and non-administrative issues stocks are sampled. Logistic regression analysis, decision tree, support vector machine, random forest, and LightGBM are used to predict the designation of administrative issues. According to the results of analysis, LightGBM with 82.73% classification accuracy is the best prediction model, and the prediction model with the lowest classification accuracy is a decision tree with 71.94% accuracy. As a result of checking the top three variables of the importance of variables in the decision tree-based learning model, the financial variables common in each model are ROE(Net profit) and Capital stock turnover ratio, which are relatively important variables in designating administrative issues. In general, it is confirmed that the learning model using the ensemble had higher predictive performance than the single learning model.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.