• Title/Summary/Keyword: 도로 균열

Search Result 678, Processing Time 0.026 seconds

Characteristics of defect on segmental lining of TBM tunnel in operational subway (운용중인 국내 지하철 TBM터널의 세그먼트라이닝 결함특성 분석)

  • Choo, Jinho;Lee, DongHun;Noh, EunChul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.1
    • /
    • pp.109-128
    • /
    • 2022
  • The precise inspection for safety and diagnosis (PISD) of tunnel has been conducted by the special act on safety control of public structures. However, the present assessment for the segmental lining of TBM tunnel has limitation such as: NDTs for integrity, segmental configuration for field inspection, and consideration for jacking system. Even if the number of TBM tunnel is less than 1% of enrolled facility in FMS, more attention to maintenance should be necessary due to its usage such as multi-use facility and national important facility. Compared to NATM tunnel, excavated by drilling and blasting and then installed lining by cast-in-place within 6~12 m, TBM tunnel is cut out ground by disk and cutter-bit and then assembled 7 pieces of precast segment, 1.2~1.4 m wide. Different features of design, construction, and maintenance should be considered to be more exact evaluation of TBM tunnel. The characteristics of defect is categorized and analyzed with 11 operational TBM tunnels in domestic subway. To be more comprehend various particular defects, foreign studies have been also adapted. Crack and leakage are categorized in 7 patterns. Breakage/spalling and corrosion are also grouped into 3 patterns. Patterned defects or damages are fed back in design, construction, and are useful guidelines for maintenance stage in future.

Rock Mass Stability of the Buddha Statue on a Rock Cliff using Fracture Characteristics and Geological Face-Mapping (마애불 암반의 단열특성과 지질맵핑을 이용한 안정성 해석)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.539-544
    • /
    • 2023
  • The subject of this study is the Maae Buddha statue in granodiorite of the Mesozoic Cretaceous period, which is concerned about stability as a standing stone cultural property located in ◯◯-dong, Gyeongsangbuk-do. For stability analysis, three-dimensional face mapping, geological properties of joints, three-dimensional scanning, ultrasonic velocity, polarization microscopy, electron microscopy analysis and XRD analysis were performed. In addition, the safety factor of the Maaebul was calculated by analyzing the damage status investigation, stereographic projection analysis, rock classification, and limit equilibrium analysis. The types and scales of damage and possible collapse by section depend on the degree of weathering of the rock and the orientation and characteristics of the joints, but wedge-failure and toppling-failure are expected to be small-scale. The safety factor of Maaebul in dry and wet conditions is less than 1.2, so stability is concerned. The types of damage were mainly observed, such as exfoliation, cracking, granular decomposition, and vegetation growth. The Maaebul rock is granodiorite, and the surface discoloration materials are K, Fe, and Mg. The 4 sets of joints are developed, J1 is tensile joint and the others are shear joint. The uniaxial compressive strength estimated by ultrasonic exploration is 514kgf/cm2, which corresponds to most soft rocks and some weathered rocks. Rock classification(RMR) is estimated to be grade 5, very poor rock mass. These technique along with the existing methods of safety diagnosis of cultural properties are expected to be a reasonable tool for objective interpretation and stability review of stone cultural properties.

River Embankment Stability against Hydraulic Piping Failure in Korea (우리나라 하천제방에 대한 내부침식 파괴 연구 : 사례연구)

  • Kwon, Kyo-Keun;Han, Sang-Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.33-42
    • /
    • 2006
  • Lots of river embankments or levees in Korea are quite so old and unknown the origin even. The river deposits, moreover, obtainable easily somewhere were used for materials of embankment without any technical considerations such as the influence soil properties and construction methods on embankment stability. It's natural that safety would be threatened if the water level rises due to flood or rainfall when it comes to abnormal weather conditions, especially. From this point of view, enlargement of embankment, irrigation works, etc. are in progress recently at the situation from a reinforcement work. However, taking influence of soil properties and construction methods on embankment stability into account against cracking or piping is still insufficient. Fragmentary design criteria or irrational construction methods are applied rather as the case may be. In this study, therefore, a way to estimate piping and cracking resistance (Sherard, 1953) has been introduced and reevaluated for practical use with an eye to material properties and its applicability to piping-experienced embankments was examined. Piping possibility was also examined in the present design criteria and compared. In view of the results achieved, it reflects that both yield piping possibility. But it's still necessary to complement how to judge and verify piping resistance of given soils with gradation curves by the representative curve, quantitatively and that piping resistance should consider compaction effects as well.

Analyzing Leakage Defect Types in Educational Facilities and Deriving Key Management Strategies Using the FTA Method (FTA기법을 이용한 교육시설 누수 하자 유형 분석 및 주요 원인 관리방안 )

  • Jung, Daegyo;Park, Hyunjung;Lee, Dongyeop;Kim, Daeyoung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2024
  • In recent years, the construction industry has diligently focused on improving the quality and safety of buildings through smart technologies. However, there is a growing trend of leakage defects, especially in educational facilities, due to aging. The objective of this study is to analyze the causes of these defects in educational environments using the Fault Tree Analysis (FTA) technique and propose preventive measures based on the findings. The FTA technique is explained through a review of domestic literature, and data from the Educational Support Center from 2019 to 2021 are examined to identify major defects. The construction of the Fault Tree (FT) for leakage defects resulted in the identification of 12 basic events. Subsequently, a comprehensive understanding of the causes of leakage is achieved through FTA analysis, leading to the identification of the primary causes of defects. Leakage defects accounted for 46.8% of all reported issues in educational facilities, with roof (ceiling) leaks being the most common problem. FTA analysis revealed that poor substrate treatment was the main cause of roof (ceiling) leaks, which could be attributed to cracks in the waterproof layer, joint cracks, and microvoids in the waterproof layer. The primary achievement of this research is to provide essential data for preventing leakage defects in educational facilities and developing preventive measures through the FTA technique. These results are expected to significantly enhance the management of educational facilities and the prevention of leakage issues.

Seismic Performance of Hollow Rectangular Precast Segmental Piers (프리캐스트 중공 사각형 철근콘크리트 교각의 내진성능)

  • Lee, Jae-Hoon;Park, Dong-Kyu;Choi, Jin-Ho;Shin, Sung-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.705-714
    • /
    • 2012
  • Precast reinforced concrete bridge columns with hollow rectangular section were tested under cyclic lateral load with constant axial force to investigate its seismic performance. After all the precast column segments were erected, longitudinal reinforcement was inserted in the sheath prefabricated in the segments, which were then mortar grouted. Main variables of the test series were column aspect ratio, longitudinal reinforcement ratio, amount of lateral reinforcement, and location of segment joints. The aspect ratios were 4.5 and 2.5, and the longitudinal steel ratios were 1.15% and 3.07%. The amount of lateral reinforcement were 95%, 55%, 50%, and 27% of the minimum amount for full ductility design requirements in the Korean Bridge Design Code. The locations of segment joints in plastic hinge region were 0.5 and 1.0 times of the section depth from the bottom column end. The test results of cracking and failure mode, axial-flexural strength, lateral load-displacement relationship, and displacement ductility are presented. Then, safety of the ductility demand based seismic design in the Korean Bridge Design Code is discussed. The column specimens showed larger ductility than expected, because buckling of longitudinal reinforcing bar was prevented due to confinement developed not only by transverse steel but also by sheath and infilling mortar.

Effect of Tire Contact Stresses on Tensile Strains in the Surface of Thin Asphalt Pavement (접지압력이 앎은 아스팔트포장 표층 인장 변형률에 미치는 영향 분석)

  • Park, Dae-Wook;Park, Joon-Kyu
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.47-55
    • /
    • 2008
  • In this paper, comparisons are presented on the predicted tensile strains which can affect the fatigue life of a thin asphalt concrete (AC) pavement near the surface of pavement from three-dimensional (3D) finite element (FE) using 3D measured tire contact stresses of a radial tire and a bias ply tire and a layered linear elastic program (BISAR). The objective was to analyze the stress distributions for a 11R22.5 radial tire and a $10{\times}20$ bias ply tire, and to compare the predicted tensile strains at the top and bottom of AC surface using different analysis methods. The results show that the stress distributions of two tires are similar but the 11R22.5 radial tire has much higher vertical contact stress than that of the $10{\times}20$ bias ply tire. The predicted tensile strains at the bottom of AC layer under the center of tire showed higher value by BM (BISAR with the measured contact area) method, which the measured tire contact area is used in a layered elastic program, while the tensile strain at the top of AC surface of 3.5cm offset distance from tire edge by 3D FE analysis showed the highest values among three analysis methods.

  • PDF

A Study on the Application of Very Rapid Hardening Acrylic Polymer Modified Concrete for Bonded Concrete Overlay Method (접착식 콘크리트 덧씌우기 공법을 위한 초속경 아크릴계 폴리머 개질 콘크리트의 적용성 연구)

  • Lee, Seung-Woo;Kim, Young-Kyu;Lee, Poong-Hee
    • International Journal of Highway Engineering
    • /
    • v.13 no.1
    • /
    • pp.139-148
    • /
    • 2011
  • Asphalt concrete overlay method is used by general maintenance and rehabilitation of construction for aged concrete pavement in Korea. However, in case of the AC overlay method to extend service life of the existing concrete pavements, various distresses of reflection crack, pothole and rutting are the typical problems of the asphalt overlay on existing concrete pavement since it has different physical characteristics between asphalt overlay and existing concrete pavement. To achieve this, application of concrete overlay method is required instead of AC overlay method. Concrete overlay method has advantages that can reduce maintenance cycle and costs since it has excellent bearing value for heavy vehicles and no rutting. However, technical problems of detour road construction, traffic control and other disadvantages happened by long curing time. Thus, in this study and experimental research were launched to evaluate the workability, durability and resistance against environmental loading of Very Rapid Hardening Acrylic Polymer Modified Concrete(VRH-APMC) for application of bonded concrete overlay method. Test results showed that the compressive and bond strength were exceed 21MPa and 1.4MPa of target strength after four hours for rapid traffic opening properties. And tests of resistance against environmental loading results showed that VRH-APMC secured excellent durability. Thus, it was known that VRH-APMC was suitable material for large scale bonded concrete overlay method, and it was possible to use maintenance and rehabilitation method which needs enough workability and rapid traffic opening.

Analysis of Dowel Bar Placement Accuracy with Construction Methods (시공방법에 따른 다웰바 시공상태 분석)

  • Lee, Jae-Hoon;Kim, Hyung-Bae;Kwon, Soon-Min;Kwon, Ou-Sun
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.101-114
    • /
    • 2007
  • Dowel bars in the jointed concrete pavement are used to both provide load transfer across pavements joints and prevent the joint faulting leading to longer service life. On the contrary, the misplacement of dowel bar can provide negative results including the joint freezing(locking) that may cause the joint spatting and unexpected mid-slab cracking. The dowel bar can be placed using the assembly or dowel bar inserter (DBI) during the concrete pavement construction. In the domestic practice of the concrete pavement construction, the dowel bar is placed using the assembly method. This study primarily focuses on the comparison of these two dowel placement methods using the field data from the KHC test road in which both dowel placement methods have been applied to a certain length of the concrete pavement. The field data regarding the alignment of the dowel bars placed by both methods was collected using MIT-SCAN2, a nondestructive measuring equipment, and processed to compute Joint Score and Running Ave. Joint Score which are used as indicators of the dowel bar performance. The comparison of the methods for the dowel bar placement using these indicators shows that the DBI method provided much better alignment of the dowel bars reducing the risk of joint freezing than the assembly method. In order to improve the quality of the dowel bar placement using the assembly method, the current weak points of the assembly method including the fabrication, storage, and installation of dowel bar assembly were investigated and the solution was suggested. The improved dowel bar sets based on the suggested solution have been applied to an actual practice of the concrete pavement construction. The field data shows that the improved assembly method suggested in this study can highly reduce the risk of joint freezing.

  • PDF

Interfacial Control of Multi-functional CNT and ITO/PET Nanocomposites having Self-Sensing and Transparency (자체-감지능 및 광투과도를 지닌 CNT 및 ITO/PET 다기능성 나노복합소재의 계면 조절 연구)

  • Wang, Zuo-Jia;Kwon, Dong-Jun;Gu, Ga-Young;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Transparent and conductive carbon nanotube on polyethylene terephthalate (PET) were prepared by dip-coating method for self-sensing multi-functional nanocomposites. The changes in the electrical and optical properties of CNT coating mainly depended on the number of dip-coating, concentration of CNT solution. Consequently, the surface resistance and transmittance of CNT coating were sensitively controlled by the processing parameters. Surface resistance of CNT coating was measured using four-point method, and surface resistance of coated CNT could be better calculated by using the dual configuration method. Optical transmittance of PET film with CNT coating was evaluated using UV spectrum. Surface properties of coated CNT investigated by wettability test via static and dynamic contact angle measurement were consistent with each other. As dip-coating number increased, surface resistance of coated CNT decreased seriously, whereas the transmittance exhibited little lower due to the thicker CNT networks layer. Interfacial microfailure properties were investigated for CNT and indium tin oxide (ITO) coatings on PET substrates by electrical resistance measurement under cyclic loading fatigue test. CNT with high aspect ratio exhibited no change in surface resistance up to 2000 cyclic loading, whereas ITO with brittle nature showed a linear increase of surface resistance up to 1000 cyclic loading and then exhibited the level-off due to reduced electrical contact points based on occurrence of many micro-cracks.

A Study for Roughness of Joungbu Expressway (중부고속도로 평탄성 특성에 관한 연구)

  • Kim, Sung-Ho;Suh, Young-Chan;Cho, Yoon-Ho;Park, Kyung-Boo
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.131-140
    • /
    • 2001
  • Concrete pavement of Jungbu Expressway composed of CRCP(Continuously Reinforced Concrete Pavement) and JCP(Jointed Concrete Pavement). The CRCP was firstly constructed and applied to new expressway in Korea. It is a good source of the study to analyze the performance of CRCP and JCP because it experiences same amount of traffic and environmental loading. Up to the present, condition survey has conducted several times during 13 years but roughness measurement has not been carefully conducted. Through comparisons among several types of pavement(CRCP, JCP, Asphalt) by roughness, CRCP is superior to JCP. In addition, connected sections in the highway such as bridges and tunnels that have higher IRI values, about 5mm/m, than normal sections should be considered appropriated maintenance such as diamond grinding. The relationship between IRI and distresses carried out by Korea Highway Cooperation in 1999 skewed that the number of crack is related to IRI value in JCP, while other distresses of JCP and CRCP are not shown clearly. The comparison study with IRI values between Jungbu Expressway and GPS-3(JCP) and GPS-5(CRCP) of LTPP data also showed that roughness of Jungbu Expressway is not inferior to that of the state. Some of section showed larger values of IRI are linked with under-9round structures for passages and drainages. The overall performance considering only roughness, the CRCP is also superior to JCP in sections with under-ground tunnels.

  • PDF