• Title/Summary/Keyword: 도로 공사구간

Search Result 221, Processing Time 0.027 seconds

Development of Deep Learning Model for Detecting Road Cracks Based on Drone Image Data (드론 촬영 이미지 데이터를 기반으로 한 도로 균열 탐지 딥러닝 모델 개발)

  • Young-Ju Kwon;Sung-ho Mun
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Drones are used in various fields, including land survey, transportation, forestry/agriculture, marine, environment, disaster prevention, water resources, cultural assets, and construction, as their industrial importance and market size have increased. In this study, image data for deep learning was collected using a mavic3 drone capturing images at a shooting altitude was 20 m with ×7 magnification. Swin Transformer and UperNet were employed as the backbone and architecture of the deep learning model. About 800 sheets of labeled data were augmented to increase the amount of data. The learning process encompassed three rounds. The Cross-Entropy loss function was used in the first and second learning; the Tversky loss function was used in the third learning. In the future, when the crack detection model is advanced through convergence with the Internet of Things (IoT) through additional research, it will be possible to detect patching or potholes. In addition, it is expected that real-time detection tasks of drones can quickly secure the detection of pavement maintenance sections.

Methodology for Estimating Highway Traffic Performance Based on Origin/Destination Traffic Volume (기종점통행량(O/D) 기반의 고속도로 통행실적 산정 방법론 연구)

  • Howon Lee;Jungyeol Hong;Yoonhyuk Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.119-131
    • /
    • 2024
  • Understanding accurate traffic performance is crucial for ensuring efficient highway operation and providing a sustainable mobility environment. On the other hand, an immediate and precise estimation of highway traffic performance faces challenges because of infrastructure and technological constraints, data processing complexities, and limitations in using integrated big data. This paper introduces a framework for estimating traffic performance by analyzing real-time data sourced from toll collection systems and dedicated short-range communications used on highways. In particular, this study addresses the data errors arising from segmented information in data, influencing the individual travel trajectories of vehicles and establishing a more reliable Origin-Destination (OD) framework. The study revealed the necessity of trip linkage for accurate estimations when consecutive segments of individual vehicle travel within the OD occur within a 20-minute window. By linking these trip ODs, the daily average highway traffic performance for South Korea was estimated to be248,624 thousand vehicle kilometers per day. This value shows an increase of approximately 458 thousand vehicle kilometers per day compared to the 248,166 thousand vehicle kilometers per day reported in the highway operations manual. This outcome highlights the potential for supplementing previously omitted traffic performance data through the methodology proposed in this study.

Fully Coupled Seismic Analysis of Stress-Flow According to Tunnel Drainage Type (터널 배수 형식에 따른 응력-침투 연계 내진해석)

  • Byoung-Il Choi;Myung-Ho Ha;Dong-Ha Lee;Eun-Cheol Noh;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.94-103
    • /
    • 2023
  • Built in urban ares tunnels is necessary to accurately grasp not only the above-ground environment of the tunnel but also the below-ground environment of the tunnel for design and construct. However, fully coupled analysis of stress and flow is very difficult due to the limited function of the tunnel numerical analysis program and difficulty in using program. This can lead to excessive design that increases the construction cost or occur problems that can lead to accidents during construction. In particular, in the case of an urban tunnel has a low layer soil section above the tunnel and the groundwater level exists in the upper layer of the tunnel. Therefore, a reduction in the groundwater level during underground construction may increase the effective stress of the upper layer and cause the ground to subsidence. So It is necessary to design after accurately evaluating the change in the groundwater level. In this study, the tunnel's behavioral characteristics were analyzed through fully coupled analysis of stress and flow according to the drainage type for an urban underground tunnel.

Different Impacts of Independent Recurrent and Non-Recurrent Congestion on Freeway Segments (고속도로상의 독립적인 반복 및 비반복정체의 영향비교)

  • Gang, Gyeong-Pyo;Jang, Myeong-Sun
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.99-109
    • /
    • 2007
  • There have been few studies on the impacts of independent recurrent and non-recurrent congestion on freeway networks. The main reason is due partly to the lack of traffic data collected during those periods of recurrent and non-recurrent congestion and partly to the difficulty of using the simulation tools effectively. This study has suggested a methodology to analyze the independent impacts of the recurrent and non-recurrent congestion on target freeway segments. The proposed methodology is based on an elaborately calibrated simulation analysis, using real traffic data obtained during the recurrent and non-recurrent congestion periods. This paper has also summarized the evaluation results from the field tests of two ITS technologies, which were developed to provide drivers with real-time traffic information under traffic congestion. As a result, their accuracy may not be guaranteed during the transition periods such as the non-recurrent congestion. In summary, this study has been focused on the importance of non-recurrent congestion compared to recurrent congestion, and the proposed methodology is expected to provide a basic foundation for prioritizing limited government investments for improving freeway network performance degraded by recurrent or non-recurrent congestion.

Ice Melting Capacity Evaluation of Applicable Materials of De-icing Fluid for High Speed Railway Rolling Stock (고속철도차량용 제빙액으로의 적용가능물질에 대한 융빙성능 평가)

  • Park, Gyoung-Won;Lee, Jun-Ku;Lee, Hong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.384-388
    • /
    • 2019
  • In winter season, the snow and ice accretion on the bottom of the high speed railway rolling stock and boogie part has fallen at a high speed from the ballast section (gravel section for the transmission of the rolling stock load received by sleepers and fixing sleepers), causing the gravel to be scattered, thereby damaging the railway rolling stock structures and facilities. In order to solve these problems, the gravel scattering prevention net, manual de-icing, and movable hot air machine were used, but their efficiency was low. For the more efficient de-icing than ever before, an optimum material for de-icing fluid for high speed railway rolling stock was developed by evaluating the ice melting capacity, kinematic viscosity, evaporation of the material used as a chemical de-icing fluid. Four kinds of organic acid salts (sodium formate, sodium acetate, potassium formate and potassium acetate) and two different alcohols (propylene glycol, glycerol) were used as evaluation materials. Potassium formate, potassium acetate, and propylene glycol had similar ice melting capacities in the indoor test, but the propylene glycol showed the best ice melting capacity in spraying the system simulation test. This is because the kinematic viscosity of propylene glycol was 2.989029 St, which is higher than those of other materials therefore, it could stay longer on the ice and de-icing. In addition, potassium formate and potassium acetate were difficult to be used since the crystals precipitated and adversely affected the appearance of the rolling stock. The propylene glycol is the most optimum as an de-icing fluid for the high speed railway rolling stock.

Modification of the Hyperbolic Method for Staged Fill (단계성토 시 쌍곡선법의 개선된 해석방법)

  • Jang, Suk-Myung;Han, Heui-Soo
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.513-523
    • /
    • 2022
  • The purpose of settlement management when treating soft ground through preloading is to determine the amount of settlement, check the progression of consolidation, and compare the settlement with the target settlement amount. Of the various methods available for predicting settlement based on measured data, the hyperbolic method was used in this study to analyze the settlement behavior of soft ground considering the creep behavior resulting from staged fill. Two versions of the method were used: the existing hyperbolic method, and a modified hyperbolic method. The existing hyperbolic method predicts the settlement amount using data for the final settlement section only during soft ground treatment through staged fill, for which the coefficient of consolidation behavior (k) was computed to give a predicted final consolidation settlement amount of Sr = 1.05 cm. In comparison, using the modified method, a predicted final consolidation settlement of Sr = 0.50 cm is obtained by considering the data for each staged fill section. These results show that the modified method considering data from the staged settlement was more accurate than the existing method considering data only from the final settlement section. This modification to the hyperbolic method therefore represents an improvement in performance over the existing method.

Wetting-Induced Collapse in Fill Materials for Concrete Slab Track of High Speed Railway (고속철도 콘크리트궤도 흙쌓기재료의 Wetting Collapse에 관한 연구)

  • Lee, Sung-Jin;Lee, Il-Wha;Im, Eun-Sang;Shin, Dong-Hoon;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.79-88
    • /
    • 2008
  • Recently, the high speed railway comes into the spotlight as the important and convenient traffic infrastructure. In Korea, Kyung-Bu high speed train service began in bout 400 km section in 2004, and the Ho-Nam high speed railway will be constructed by 2017. The high speed train will run with a design maximum speed of 300-350 km/hr. Since the trains are operated at high speed, the differential settlement of subgrade under the rail is able to cause a fatal disaster. Therefore, the differential settlement of the embankment must be controlled with the greatest care. Furthermore, the characteristics and causes of settlements which occurred under construction and post-construction should be investigated. A considerable number of studies have been conducted on the settlement of the natural ground over the past several decades. But little attention has been given to the compression settlement of the embankment. The long-term settlement of compacted fills embankments is greatly influenced by the post-construction wetting. This is called 'hydro collapse' or 'wetting collapse'. In spite of little study for this wetting collapse problem, it has been recognized that the compressibility of compacted sands, gravels and rockfills exhibit low compressibility at low pressures, but there can be significant compression at high pressures due to grain crushing (Marachi et al. 1969, Nobari and Duncan 1972, Noorany et al. 1994, Houston et al. 1993, Wu 2004). The characteristics of compression of fill materials depend on a number of factors such as soil/rock type, as-compacted moisture, density, stress level and wetting condition. Because of the complexity of these factors, it is not easy to predict quantitatively the amount of compression without extensive tests. Therefore, in this research I carried out the wetting collapse tests, focusing on various soil/rock type, stress levels, wetting condition more closely.

A Study on Improvement Direction of Public Service Advertisement to Prevent Drowsiness Driving on Highway (고속도로 졸음운전 방지를 위한 공익광고의 개선방향에 대한 연구)

  • Kwon, Jun-Ho
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.77-83
    • /
    • 2017
  • The Korea Expressway Corporation announced that road casualties on expressways in 2016 were 262 deaths, a 24% decrease compared to 343 deaths in 2015, thanks to the expansion of rest areas for sleepy drivers. And the installation of large-sized banners containing strong messages such as "dozing while driving means your death" helped to reduce the casualty caused by driving while drowsy by 35% compared to that in 2015. Accordingly, this study tried to analyze the impact of public advertisements designed to prohibit dozing while driving on expressways upon drivers, and to present a direction for improvement of such public advertisements in the future. Based on case studies and library researches, the study contemplated the effects of public advertisements on expressways at home and abroad. It was confirmed that the accident rate has been higher on straight roads than on curved roads and that the framing of negative messages using provocative images or slogans on traffic accidents has been considerably effective. In conclusion, if the installation of outdoor billboards for public advertisements at rest areas for sleepy drivers is institutionalized and the systematic provision of information by road section inside and outside of vehicles via Variable Message Sign (VMS) services on expressways, outdoor billboards, or navigation services (including smartphones) is available, it would be possible to maximize the effect of the public advertisements.

The Evaluation of Small Scaled Stream Naturalness for Stream Channel Restoration (소하천 환경조성사업의 평가를 위한 소하천자연도 평가)

  • Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.5
    • /
    • pp.359-369
    • /
    • 2007
  • In this study the evaluation method for riverine naturalness proposed previously by other researcher has been modified to assess stream naturalness of small scaled streams. Two evaluation items have been added to the previously proposed method. That is, the modified method for evaluating naturalness of small scaled streams contains 16 evaluation items with two categories - river morphology and river environments. The three evaluation items have been improved based on the results of stream configuration and characteristics investigation. To prepare evaluation index for channel configuration of small scaled stream, 55 small scaled streams have been selected to analyze sinuosity, wavelength, etc. It has been shown that the values of sinuosity are around 1.2 and one wavelength appears approximately every 500 m in the sample streams. An equation implied diversity for width of normal flow has been proposed to add the evaluation index for diversity of channel width. The every 500 m 1,000 m along small scaled stream is also recommended through the investigation as the interval of evaluation unit. The modified method has been applied to the DangWang stream to estimate the effect of stream rectification project. It has shown that the proposed method would appropriately reflect channel morphology and environments before and after the rectification project.

Inspecting Stablity of DSM method with Grouting on Tunnel Face using Chamber Test and Numericlal Analysis (토조실험과 수치해석을 이용한 막장면 그라우팅 DSM공법의 안정성 검토)

  • Kim, Young-Uk;Park, Young-Bok;Kim, Li-Sak;Kim, Nak-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.677-683
    • /
    • 2016
  • In urban areas, underground tunnel construction sites have spread widely to accommodate rapidly increasing traffic volume along with a high-degree economic growth. Earth tunneling might be adapted frequently for the underground space securing, and various tunneling methods have been developed to stabilize the tunnel face and crown. Among them, the DSM (divided shield method) is gaining popularity for its enhanced stability and construction efficiency. This method has its foundation from the Messer Shield method, which is one of the trenchless special tunneling methods. This study examined the effects of face reinforcement on construction the sequence through a large scale soil chamber test and numerical analyses. The chamber has a size of a 1/2 scale of the real tunnel. Surface settlements were measured according the tunneling process. Commercially available software, MIDAS GTS, was used for numerical analysis and its result was compared with the values obtained from the chamber test. The results of the study show that both settlements of the embanked soils and the stress of the tunnel girder are located within the safe criteria. Overall, this study provides basic data and the potential of using a reinforced tunnel face to enhance DSM applications.