• Title/Summary/Keyword: 도로안전

Search Result 1,920, Processing Time 0.028 seconds

KISA 초대석 - 제1회 전국 건설안전 경진대회 최우수상(고용부 장관상) 수상, 대우건설 박성환 안전팀장

  • Yeon, Seul-Gi
    • The Safety technology
    • /
    • no.192
    • /
    • pp.14-15
    • /
    • 2013
  • 최근 우수한 안전관리로 유명한 주요 건설사들이 각자의 안전역량을 겨루는 자리가 마련돼 화제가 됐다. 그것은 바로 한국도로공사가 개최한 '제1회 전국 건설안전 경진대회'였다. 이 자리에는 대우건설, 현대산업개발, 대림산업, 포스코건설, GS건설, 한화건설 등 내로라하는 건설사들이 대거 참여해 자사가 자랑하는 안전관리기법과 기술을 소개했다. 우열을 가리기 힘든 치열한 경합 끝에 대회 최우수상인 고용노동부 장관상의 영예는 대우건설 동홍천~양양간 고속도로 14공구 현장이 차지했다. 본지는 이곳 현장의 안전관리를 이끌고 있는 박성환 안전팀장을 만나 그만의 안전철학과 안전관리 비법 등에 대해 이야기를 나누어봤다.

  • PDF

Model for Predicting Accidents at a Unsignailzed Intersections in a Community Road (생활도로내 비신호교차로 사고예측 모형 개발)

  • Chang, Iljoon;Kim, Jang Wook;Lee, Hyeong Rok;Lee, Soo Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3D
    • /
    • pp.343-353
    • /
    • 2011
  • The unsignalized intersections in a community road in the city of Seoul have 3,753 traffic accidents(9%) of total 41,702 cases in 2008, not high in the occurrence rate of traffic accidents, but seem to have a quite high potential of accidents due to the unreasonable and insufficient operation of systems and facilities in the part of traffic foundations. In particular, the un-signalized intersections in a community road have an insufficient measure for safety as compared to the crossroads with signals, and there are few analysis of traffic accidents and domestic researches on the model of affecting factors. Our country also has no concept of passing priority in operating a crossroad without signals, differently from foreign countries, so the researches and safety measures for improving the safety of a crossroad without signals in a community road are urgent. Therefore, This study set out to analyze the road conditions, traffic conditions, and traffic environment conditions on unsignalized intersection, to identify the elements that would impose obstructions in safety, and develop a traffic accident prediction model to evaluate the safety of an unsignalized intersection using the correlation between the elements and an accident. In addition, the focus was made on suggesting appropriate traffic safety policies by dealing with the danger elements in advance and on enhancing the safety on intersection in developing a traffic accident prediction model for an unsignalized intersection.

Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety (주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘)

  • Shim, Seungbo;Jeong, Jae-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.95-111
    • /
    • 2021
  • As the population decreases in an aging society, the average age of drivers increases. Accordingly, the elderly at high risk of being in an accident need autonomous-driving vehicles. In order to secure driving safety on the road, several technologies to respond to various obstacles are required in those vehicles. Among them, technology is required to recognize static obstacles, such as poor road conditions, as well as dynamic obstacles, such as vehicles, bicycles, and people, that may be encountered while driving. In this study, we propose a deep neural network algorithm capable of simultaneously detecting these two types of obstacle. For this algorithm, we used 1,418 road images and produced annotation data that marks seven categories of dynamic obstacles and labels images to indicate road damage. As a result of training, dynamic obstacles were detected with an average accuracy of 46.22%, and road surface damage was detected with a mean intersection over union of 74.71%. In addition, the average elapsed time required to process a single image is 89ms, and this algorithm is suitable for personal mobility vehicles that are slower than ordinary vehicles. In the future, it is expected that driving safety with personal mobility vehicles will be improved by utilizing technology that detects road obstacles.

Studies on the Roadside Revegetation and Landscape Reconstruction Measures (도로녹화(道路綠化) 및 도로조경기술개발(道路造景技術開発)에 관(関)한 연구(硏究))

  • Woo, Bo Myeong;Son, Doo Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.48 no.1
    • /
    • pp.1-24
    • /
    • 1980
  • One of the most important basic problems for developing the new techniques in the field of road landscape planting practices in Korea, is to clarify, analyse, and evaluate the existing technical level through actual field survey on the various kinds of planting techniques. This study is, therefore, aimed at the good grasp of detail essences of the existing level of road landscape planting techniques through field investigations of the executed sites. In this study, emphasized efforts are made to the detail analysis and systematic rearrangements of such main subjects as; 1) principles and functions of the road landscape planting techniques; 2) essential elements in planning of it; 3) advanced practices in execution of planting of it; 4) and improved methods in maintenance of plants and lands as an entire system of road landscape planting techniques. The road landscape planting techniques could be explained as the planting and landscaping practices to improve the road function through introduction of plants (green-environment) on and around the roads. The importances of these techniques have been recognized by the landscape architects and road engineers, and they also emphasize not on]y the establishment of road landscape features but also conservation of human's life environment by planting of suitable trees, shrubs, and other vegetations around the roads. It is essentially required to improve the present p]anting practices for establishment of the beautiful road landscape features, specially in planning, design, execution, establishment, and maintenance of plantings of the environmental conservation belts, roadside trees, footpathes, median strips, traffic islands, interchanges, rest areas, and including the adjoining route roads.

  • PDF

Development of Traffic Safety Monitoring Technique by Detection and Analysis of Hazardous Driving Events in V2X Environment (V2X 환경에서 위험운전이벤트 검지 및 분석을 통한 교통안전 모니터링기법 개발)

  • Jeong, Eunbi;Oh, Cheol;Kang, Kyeongpyo;Kang, Younsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.11 no.6
    • /
    • pp.1-14
    • /
    • 2012
  • Traffic management centers (TMC) collect real-time traffic data from the field and have powerful databases for analysing, recording, and archiving the data. Recent advanced sensor and communication technologies have been widely applied to intelligent transportation systems (ITS). Regarding sensors, various in-vehicle sensors, in addition to global positioning system (GPS) receiver, are capable of providing high resolution data representing vehicle maneuverings. Regarding communication technologies, advanced wireless communication technologies including vehicle-to-vehicle (V2V) and vehicle-to-vehicle infrastructure (V2I), which are generally referred to as V2X, have been widely used for traffic information and operations (references). The V2X environment considers the transportation system as a network in which each element, such as the vehicles, infrastructure, and drivers, communicates and reacts systematically to acquire information without any time and/or place restrictions. This study is motivated by needs of exploiting aforementioned cutting-edge technologies for developing smarter transportation services. The proposed system has been implemented in the field and discussed in this study. The proposed system is expected to be used effectively to support the development of various traffic information control strategies for the purpose of enhancing traffic safety on highways.

Study on Advisory Safety Speed Model Using Real-time Vehicular Data (실시간 차량정보를 이용한 안전권고속도 산정방안에 관한 연구)

  • Jang, JeongAh;Kim, HyunSuk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.443-451
    • /
    • 2010
  • This paper proposes the methodology about advisory safety speed based on real-time vehicular data collected from highway. The proposed model is useful information to drivers by appling seamless wireless communication and being collected from ECU(Engine Control Unit) equipment in every vehicle. Furthermore, this model also permits the use of realtime sensing data like as adverse weather and road-surface data. Here, the advisory safety speed is defined "the safety speed for drivers considering the time-dependent traffic condition and road-surface state parameter at uniform section", and the advisory safety speed model is developed by considering the parameters: inter-vehicles safe stopping distance, statistical vehicle speed, and real-time road-surface data. This model is evaluated by using the simulation technique for exploring the relationships between advisory safety speed and the dependent parameters like as traffic parameters(smooth condition and traffic jam), incident parameters(no-accident and accident) and road-surface parameters(dry, wet, snow). A simulation's results based on 12 scenarios show significant relationships and trends between 3 parameters and advisory safety speed. This model suggests that the advisory safety speed has more higher than average travel speed and is changeable by changing real-time incident states and road-surface states. The purpose of the research is to prove the new safety related services which are applicable in SMART Highway as traffic and IT convergence technology.

Development of Traffic Accident Prediction Models Considering Variations of the Future Volume in Urban Areas (신설 도시부 도로의 장래 교통량 변화를 반영한 교통사고 예측모형 개발)

  • Lee, Soo-Beom;Hong, Da-Hee
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.125-136
    • /
    • 2005
  • The current traffic accident reduction procedure in economic feasibility study does not consider the characteristics of road and V/C ratio. For solving this problem, this paper suggests methods to be able to evaluate safety of each road in construction and improvement through developing accident Prediction model in reflecting V/C ratio Per road types and traffic characters. In this paper as primary process, model is made by tke object of urban roads. Most of all, factor effecting on accident relying on road types is selected. At this point, selecting criteria chooses data obtained from road planning procedure, traffic volume, existence or non-existence of median barrier, and the number of crossing point, of connecting road. and of traffic signals. As a result of analyzing between each factor and accident. all appear to have relatives at a significant level of statistics. In this research, models are classified as 4-categorized classes according to roads and V/C ratio and each of models draws accident predicting model through Poisson regression along with verifying real situation data. The results of verifying models come out relatively satisfactory estimation against real traffic data. In this paper, traffic accident prediction is possible caused by road's physical characters by developing accident predicting model per road types resulted in V/C ratio and this result is inferred to be used on predicting accident cost when road construction and improvement are performed. Because data using this paper are limited in only province of Jeollabuk-Do, this paper has a limitation of revealing standards of all regions (nation).

The Road Reservation Scheme in Emergency Situation for Intelligent Transportation Systems (지능형 교통 시스템을 위한 긴급 상황에서의 도로 예약 방식)

  • Yoo, Jae-Bong;Park, Chan-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1346-1356
    • /
    • 2011
  • Transportation has been playing important role in our society by providing for people, freight, and information. However, it cuts its own throat by causing car accidents, traffic congestion, and air pollution. The main cause of these problems is a noticeable growth in the number of vehicles. The easiest way to mitigate these problems is to build new road infrastructures unless resources such as time, money, and space are limited. Therefore, there is a need to manage the existing road infrastructures effectively and safely. In this paper, we propose a road reservation scheme that provides fast and safe response for emergency vehicles using ubiquitous sensor network. Our idea is to allow emergency vehicle to reserve a road on a freeway for arriving to the scene of the accident quickly and safely. We evaluate the performance by three reservation method (No, Hop, and Full) to show that emergency vehicles such as ambulances, fire trucks, or police cars can rapidly and safely reach their destination. Simulation results show that the average speed of road reservation is about 1.09 ~ 1.20 times faster than that of non-reservation at various flow rates. However, road reservation should consider the speed of the emergency vehicle and the road density of the emergency vehicle processing direction, as a result of Hop Reservation and Full Reservation performance comparison analysis. We confirm that road reservation can guarantee safe driving of emergency vehicles without reducing their speed and help to mitigate traffic congestion.

A Research on Improving the Shape of Korean Road Signs to Enhance LiDAR Detection Performance (LiDAR 시인성 향상을 위한 국내 교통안전표지 형상개선에 대한 연구)

  • Ji yoon Kim;Jisoo Kim;Bum jin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.160-174
    • /
    • 2023
  • LiDAR plays a key role in autonomous vehicles, and to improve its visibility, it is necessary to improve its performance and the detection objects. Accordingly, this study proposes a shape for traffic safety signs that is advantageous for self-driving vehicles to recognize. Improvement plans are also proposed using a shape-recognition algorithm based on point cloud data collected through LiDAR sensors. For the experiment, a DBSCAN-based road-sign recognition and classification algorithm, which is commonly used in point cloud research, was developed, and a 32ch LiDAR was used in an actual road environment to conduct recognition performance tests for 5 types of road signs. As a result of the study, it was possible to detect a smaller number of point clouds with a regular triangle or rectangular shape that has vertical asymmetry than a square or circle. The results showed a high classification accuracy of 83% or more. In addition, when the size of the square mark was enlarged by 1.5 times, it was possible to classify it as a square despite an increase in the measurement distance. These results are expected to be used to improve dedicated roads and traffic safety facilities for sensors in the future autonomous driving era and to develop new facilities.

Development of Hazard-Level Forecasting Model using Combined Method of Genetic Algorithm and Artificial Neural Network at Signalized Intersections (유전자 알고리즘과 신경망 이론의 결합에 의한 신호교차로 위험도 예측모형 개발에 관한 연구)

  • Kim, Joong-Hyo;Shin, Jae-Man;Park, Je-Jin;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4D
    • /
    • pp.351-360
    • /
    • 2010
  • In 2010, the number of registered vehicles reached almost at 17.48 millions in Korea. This dramatic increase of vehicles influenced to increase the number of traffic accidents which is one of the serious social problems and also to soar the personal and economic losses in Korea. Through this research, an enhanced intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network will be developed in order to obtain the important data for developing the countermeasures of traffic accidents and eventually to reduce the traffic accidents in Korea. Firstly, this research has investigated the influencing factors of road geometric features on the traffic volume of each approaching for the intersections where traffic accidents and congestions frequently take place and, a linear regression model of traffic accidents and traffic conflicts were developed by examining the relationship between traffic accidents and traffic conflicts through the statistical significance tests. Secondly, this research also developed an intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network through applying the intersection traffic volume, the road geometric features and the specific variables of traffic conflicts. Lastly, this research found out that the developed model is better than the existed forecasting models in terms of the reliability and accuracy by comparing the actual number of traffic accidents and the predicted number of accidents from the developed model. In conclusion, it is expect that the cost/effectiveness of any traffic safety improvement projects can be maximized if this developed intersection hazard prediction model by combining Genetic Algorithm and Artificial Neural Network use practically at field in the future.