• Title/Summary/Keyword: 도로법

Search Result 868, Processing Time 0.028 seconds

Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting (소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Sung-Tae;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.41-52
    • /
    • 2002
  • This study dealt with analysis of size effect of testing apparatus for Kim test which measures rut resistance characteristics of asphalt mixture under static loading. Two columns in different diameter with each column having different radios of round cut (Curvature) at the bottom were used for testing asphalt mixture. Deformation load ($P_{max}$) and deformation strength ($K_D$) were found to have relatively high correlation with rut depth and dynamic stability of asphalt concrete. Diameter of specimen was not a significant factor in this test. From the statistical correlation analysis with rutting properties, the radius of curvature and diameter of loading column were found to be important factor affecting the results of the test. Among the radios (r) of curvatures, r=0.5cm and 1.0cm showed much higher correlation than the column without curvature, and r=1.0cm being better between the two. The column with diameter of 4cm showed better correlation than diameter of 3cm. Therefore, the column of 4cm diameter with r=1.0cm was found to be the best among various apparatus sizes. Prediction models for rut depth and dynamic stability were developed for each aggregate mixture based on Kim test variables using SAS STEPWISE procedure. Therefore, if this test method is validated through further study, Kim test can be used for selecting asphalt mixture with the highest resistance against permanent deformation.

  • PDF

A Fundamental Approach for Developing Deformation Strength Based on Rutting Characteristics of Asphalt Concrete (소성변형과의 상관성에 근거한 아스팔트 콘크리트의 변형강도 개발을 위한 기초연구)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Jun-Eun;Choi, Sun-Ju
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.23-39
    • /
    • 2002
  • This study dealt with developing a new approach for finding properties which might represent rut resistance characteristics of asphalt mixture under static loading. Two aggregates, a normal asphalt (pen 60-80) and 5 polymer-modified asphalts were used in preparation of 12 dense-graded mixtures. Marshall mix design was used in determination of OAC and each mixture at the OAC was prepared for a newly-developed Kim test on Marshall specimen (S=10cm) and gyratory specimen (S=15cm), and for wheel tracking test. Kim test used Marshall loading frame and specimens were conditioned for 30min at $60^{\circ}C$ before loading through Kim tester an apparatus consisting of a loading column and a specimen and column holder Diameter (D) of column was 3cm and 4cm with each column having different radius (r) of round cut at the bottom. The static load was applied at 50mm/min in axial direction of the specimen, not in diametral direction. The maximum load ($P_{max}$) and vertical deformation (y) at $P_{max}$ point were obtained from the test. A strength value was calculated based on the $P_{max}$ r, D and y by using the equation $K_D = 4P_{max}/{\pi}(D-2(r-\sqrt{2ry-y^2}))^2$ and is defined as the deformation strength ($kgf/cm^2$). The values of $P_{max}$/y and $K_I=K_D/y$ were also calculated. In general the leading column diameter and radius of round cut were significant factors affecting $K_D$ and $P_{max}$ values while specimen diameter was not. The statistical analyses showed the $K_D$ had the best correlation with rut depth and dynamic stability. The next best correlation was found from $P_{max}$ which was followed by $P_{max}$/y and $K_I$ in order.

  • PDF

Analytical Study on the Potential Risks from Right-Handled Vehicle Drivers (우측핸들차량 운전자의 잠재적 위험성 분석연구)

  • Park, Jun-Tae;Kim, Jeong-Hyun;Kang, Young-Kyun;Kim, Jang-Wook
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.2
    • /
    • pp.67-78
    • /
    • 2012
  • The current traffic regulations in Korea stipulate that traffic should keep to the right according to the Road Traffic Act; thus, customarily, the 'seat-on-the-left' system has been maintained. However, an increased number of 'seat-on-the-right' vehicles are being imported via a variety of routes from foreign countries, especially from Japan. According to the data from July 2004, 1,343 cargo vehicles and 593 passenger vehicles (for diplomats, etc.) were currently being driven on domestic road. As these 'seat-on-the-right' vehicles are not compatible with the domestic transportation system of driving on the right side of the road, there is a high risk of accidents. Experiments show that such system-driver mismatch causes longer operation time for directional signals, higher error frequency in yielding due to additional mental adjustments for 'seat-on-the-right' vehicle drivers. These are, therefore, influential factors which can lead to possible accidents. Furthermore, when the experiments test the visual range during overtaking maneuvers, the visual range of the drivers in the 'seat-on-the-left' vehicle was 2.95 meters as opposed to 1.7 meters for the drivers in the 'seat-on-the-right' vehicle. (In the experiment, the drivers were instructed to look at the paper cup 10 meters away from the back of drivers' seat.) The results demonstrate that it is necessary to have additional safety measures be implemented for the 'seat-on-the-right' vehicles.

Estimation of the Value of Green Cars Permission on Exclusive Bus Lane of Yeongdong Expressway Using a CVM Method (CVM을 이용한 영동고속도로 버스전용차로 내 친환경차 주행 허가에 대한 가치 추정)

  • Kim, Inyoung;Park, Sangmin;Kim, Kyung Hyun;Lee, Hwanpil;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.2
    • /
    • pp.1-14
    • /
    • 2021
  • The exclusive bus lanes in the Yeongdong Expressway were implemented in the Singal to Yeoju section in 2017, but the capacity of both exclusive bus lanes and general-purpose lanes of the Yeongdong Expressway decreased and the travel time increased, reducing it to the Singal to Deokpyeong section. Therefore, it is necessary to increase the efficiency of exclusive bus lanes to revitalize public transportation and improve environmental problems. This study calculated the willingness to pay and the social benefits of permission for Green cars to drive on exclusive bus lanes in Yeongdong Expressway. A survey was conducted on two groups of Green car users and Expressway users, and the willingness to pay was estimated using the CVM method. As a result, the average WTP of Green car users were estimated to be 218.7(won/km·person), and that of Expressway users were estimated to be approximately 235.5(won/km·person). The direct benefits were estimated to be approximately 7.9 billion won for Green car users, and 8.5 billion won for Expressway users in 2019. Finally, the value of time saving was estimated to be approximately 8.0 billion won.

Design of a designated lane enforcement system based on deep learning (딥러닝 기반 지정차로제 단속 시스템 설계)

  • Bae, Ga-hyeong;Jang, Jong-wook;Jang, Sung-jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.236-238
    • /
    • 2022
  • According to the current Road Traffic Act, the 2020 amendment bill is currently in effect as a system that designates vehicle types for each lane for the purpose of securing road use efficiency and traffic safety. When comparing the number of traffic accident fatalities per 10,000 vehicles in Germany and Korea, the number of traffic accident deaths in Germany is significantly lower than in Korea. The representative case of the German autobahn, which did not impose a speed limit, suggests that Korea's speeding laws are not the only answer to reducing the accident rate. The designated lane system, which is observed in accordance with the keep right principle of the Autobahn Expressway, plays a major role in reducing traffic accidents. Based on this fact, we propose a traffic enforcement system to crack down on vehicles violating the designated lane system and improve the compliance rate. We develop a designated lane enforcement system that recognizes vehicle types using Yolo5, a deep learning object recognition model, recognizes license plates and lanes using OpenCV, and stores the extracted data in the server to determine whether or not laws are violated.Accordingly, it is expected that there will be an effect of reducing the traffic accident rate through the improvement of driver's awareness and compliance rate.

  • PDF

Capacity of Urban Freeway Work Zones (도시 고속도로 공사구간 용량 산정)

  • Lee, Mi Ri;Kim, Do-Gyeong;Kim, Hyo-Seung;Lee, Chungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1123-1130
    • /
    • 2013
  • This paper aims to estimate work zone base capacity by the number of lanes for urban freeway. To do this, data were collected from the field survey and the database system maintained by traffic control center, and analyzed with four different methods such as the average maximum observation flow rate, headway, regression analysis, and parameter inspection. The work zone base capacity for urban freeway is estimated based on the average maximum observation flow rate and headway method, which are more reliable methods compared to others. The average capacity is 1,650pcphpl when the design speed is 80km/h. The capacity of four lanes one-way work zones was about 1,700pcphpl, while one of 2 lanes one-way work zones was about 1,600pcphpl. The capacity reduction rates for each are 0.15 and 0.2, respectively. The smaller the number of lane is, the more base capacity is reduced. For verification of results, we estimate the capacity by simulation analysis using PARAMICS, and compare with analytical results by a statistical method. This research can be used for efficient and systemic management of work zone in the urban freeway.

Alcohol content analysis for Takju, a representative traditional liquor in Korea (대한민국 대표 전통주 탁주의 알코올 도수 분석)

  • Oh, Chang-Hwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.6
    • /
    • pp.631-636
    • /
    • 2022
  • Alcohol content, which is an important standard for Takju, a traditional multiple parallel fermentation liquor called makgeolli, is a factor that can affect the flavor. For alcohol content analysis, the distillation/hydrometry technique is mainly used. In this study, we analyzed the alcohol content of 14 commercially available Takju by the distillation/hydrometry technique and the improved GC method, respectively, after verifying the reliability of improved GC method. The precision and accuracy of the GC method were satisfactory, and LOQ and LOD were evaluated as 0.5% and 0.1% of ethanol contents, respectively. Among the three Takju exceeding the labelled alcohol content ±1, one Takju was quantitated as alcohol content 9.9% (by GC method) and 10.1% (distillation/hydrometry technique) exceeding labelled 6.0%. It was within the analytical error range of alcohol content for other two Takju, where the alcohol contents were exceeded -1.1%. The average precision (%RSD) of 14 Takju analyzed by the distillation/hydrometry technique (36.2%) and the GC method (12.8%), confirming that the GC method was better than the other. The improved GC method was evaluated to be effective in managing and improving the alcohol content standard of Takju with the wide range of alcohol content.

Relations of Safety Factor and Reliability for Pile Load Capacity (말뚝 기초지지력에 대한 안전율과 신뢰도지수 평가)

  • Kim, Dae-Ho;Kim, Min-Ki;Hwang, Sung-Uk;Park, Young-Hwan;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.65-73
    • /
    • 2006
  • Reliability between safety factor and reliability index for driven and bored pile load capacity was analyzed in this study. 0.1B, Chin, De Beer, and Davisson's methods were used for determining pile load capacity by using load-settlement curve from pile load test. Each method defines ultimate yield and allowable pile load capacities. LCPC method using CPT results was performed for comparing results of pile load test. Based on FOSM analysis using load factors, it is obtained that reliability indices for ultimate pile load capacity were higher than those of yield and allowable condition. Present safety factor 2 for yield and allowable load capacities is not enough to satisfy target reliability index $2.0{\sim}2.5$. However, it is sufficient for ultimate pile load capacity using safety factor 3.

Review and Improvement of Highway Design Consistency Evaluation Models (설계 일관성 평가 모형의 고찰과 개선방안 연구)

  • Kim, Sang-Youp;Choi, Jai-Sung;Yang, Ji-Eun;Kim, Moon-Kyum
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.63-74
    • /
    • 2006
  • It's essential to meet the expectations of drivers through reasonable road design, which makes the drivers to recognize the conditions of road sufficiently. In this case, we could say that because the roads are consistently designed, drivers can make a safe and comfortable drive. There are so many studies about the alignment design consistency methods which are previously mentioned. In this study, Firstly we categorize the studies which are concerned with the estimation of the alignment design consistency methods and then apply the method which fits for the actual condition into the practice. And we'll make a realistic method by using the data which aye collected from the National Road. The developed model in this study is the predicting model including speed($V_t$) as the variable on the upper stream 100m of the curve. This model was developed which divided to two cases in the all directions of two lanes; One case is the $R{\leq}200m$ and another case is the R>200m. In the section of the $R{\leq}200m$, this case was influenced on the road alignment(R) and($V_t$) and another section was found that is affected to the speed($V_t$) on the upper stream loom rather than the effect of road alignment(R). In the case of all directions of four lanes, however, this study is predicted divided to two sections on the 400m of R, these section have more influenced to($V_t$) than the road alignment factors. This result of the four lanes was represented to different result with the two lanes. This study will further need development of the predicting model with the higher confidence through collecting data with more the exact data, the various road alignment data and speed of the several sections on the upper stream on the curve.

  • PDF

Stress Distribution in Concrete Pavements under Multi-Axle Vehicle Loads Obtained Using Transformed Field Domain Analysis (변환영역 해석법을 통한 콘크리트 도로 포장의 다축 차량 하중에 대한 응력 분포 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Park, Hee-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.695-702
    • /
    • 2006
  • The stress distribution and the critical stresses in concrete pavements were analyzed using formulations in the transformed field domains when dual-wheel single-, tandem-, and tridem-axle loads were applied. First the accuracy of the transformed field domain analysis results was verified by comparing with the finite element analysis results. Then, the stress distribution along the longitudinal and transverse directions was investigated, and the effects of slab thickness, concrete elastic modulus, and foundation stiffness on the stress distribution were studied. The effect of the tire contact pressure related to the tire print area was also studied, and the location of the critical stress occurrence in concrete pavements was finally investigated. From this study, it was found that the critical concrete stress due to multi-axle loads became larger as the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The number of axles did not tend to affect the critical stress ratio except for a small foundation stiffness value with which the critical stress ratio became significantly larger as the number of axles increased. The critical stress location in the transverse direction tended to move into the interior as the tire contact pressure increased, the concrete elastic modulus increased, the slab thickness increased, and the foundation stiffness decreased. The critical stress location in the longitudinal direction was under the axle for single- and tandem-axle loads, but for tridem-axle loads, it tended to move under the middle axle from the outer axles as the concrete elastic modulus and/or slab thickness increased and the foundation stiffness decreased.