• Title/Summary/Keyword: 데이터 확장성 문제

Search Result 425, Processing Time 0.025 seconds

A personalized recommendation procedure with contextual information (상황 정보를 이용한 개인화 추천 방법 개발)

  • Moon, Hyun Sil;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.15-28
    • /
    • 2015
  • As personal devices and pervasive technologies for interacting with networked objects continue to proliferate, there is an unprecedented world of scattered pieces of contextualized information available. However, the explosive growth and variety of information ironically lead users and service providers to make poor decision. In this situation, recommender systems may be a valuable alternative for dealing with these information overload. But they failed to utilize various types of contextual information. In this study, we suggest a methodology for context-aware recommender systems based on the concept of contextual boundary. First, as we suggest contextual boundary-based profiling which reflects contextual data with proper interpretation and structure, we attempt to solve complexity problem in context-aware recommender systems. Second, in neighbor formation with contextual information, our methodology can be expected to solve sparsity and cold-start problem in traditional recommender systems. Finally, we suggest a methodology about context support score-based recommendation generation. Consequently, our methodology can be first step for expanding application of researches on recommender systems. Moreover, as we suggest a flexible model with consideration of new technological development, it will show high performance regardless of their domains. Therefore, we expect that marketers or service providers can easily adopt according to their technical support.

Impacts of Perceived Value and Trust on Intention to Continue Use of Individuals' Cloud Computing: The Perception of Value-based Adoption Model (클라우드 컴퓨팅의 지각된 가치와 신뢰가 지속적 사용의도에 미치는 영향: 가치기반수용모델을 기반으로)

  • Kim, Sanghyun;Park, Hyunsun;Kim, Bora
    • Journal of Digital Convergence
    • /
    • v.19 no.1
    • /
    • pp.77-88
    • /
    • 2021
  • Cloud computing is getting a lot of attention by many people and businesses due to IT environmental changes such as the proliferation of smart devices, the increase of digital data, and the cost of IT resources. More individuals use personal cloud computing services for storing and managing information and data. Therefore, this study proposed determinants that are expected to have an influence on evaluating the value of cloud computing based on the value-based adoption model, examining the relationship between the continuous use intention of cloud computing. Results of the study show that usefulness, convenience of information access, extensibility had a positive impact on perceived value while privacy concerns and costs had a negative impact on perceived value. In addition, perceived value was found to have a significant effect on the intention to continue use of cloud computing. Finally, trust was found to have a significant effect on the perceived value and the intention to continue use of cloud computing. The findings are expected to provide useful information for understanding the factors that individual users consider important in the steadily growing cloud computing market.

An Algorithm for Referential Integrity Relations Extraction using Similarity Comparison of RDB (유사성 비교를 통한 RDB의 참조 무결성 관계 추출 알고리즘)

  • Kim, Jang-Won;Jeong, Dong-Won;Kim, Jin-Hyung;Baik, Doo-Kwon
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.3
    • /
    • pp.115-124
    • /
    • 2006
  • XML is rapidly becoming technologies for information exchange and representation. It causes many research issues such as semantic modeling methods, security, conversion far interoperability with other models, and so on. Especially, the most important issue for its practical application is how to achieve the interoperability between XML model and relational model. Until now, many suggestions have been proposed to achieve it. However several problems still remain. Most of all, the exiting methods do not consider implicit referential integrity relations, and it causes incorrect data delivery. One method to do this has been proposed with the restriction where one semantic is defined as only one same name in a given database. In real database world, this restriction cannot provide the application and extensibility. This paper proposes a noble conversion (RDB-to-XML) algorithm based on the similarity checking technique. The key point of our method is how to find implicit referential integrity relations between different field names presenting one same semantic. To resolve it, we define an enhanced implicity referentiai integrity relations extraction algorithm based on a widely used ontology, WordNet. The proposed conversion algorithm is more practical than the previous-similar approach.

  • PDF

Safety Verification Techniques of Privacy Policy Using GPT (GPT를 활용한 개인정보 처리방침 안전성 검증 기법)

  • Hye-Yeon Shim;MinSeo Kweun;DaYoung Yoon;JiYoung Seo;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.2
    • /
    • pp.207-216
    • /
    • 2024
  • As big data was built due to the 4th Industrial Revolution, personalized services increased rapidly. As a result, the amount of personal information collected from online services has increased, and concerns about users' personal information leakage and privacy infringement have increased. Online service providers provide privacy policies to address concerns about privacy infringement of users, but privacy policies are often misused due to the long and complex problem that it is difficult for users to directly identify risk items. Therefore, there is a need for a method that can automatically check whether the privacy policy is safe. However, the safety verification technique of the conventional blacklist and machine learning-based privacy policy has a problem that is difficult to expand or has low accessibility. In this paper, to solve the problem, we propose a safety verification technique for the privacy policy using the GPT-3.5 API, which is a generative artificial intelligence. Classification work can be performed evenin a new environment, and it shows the possibility that the general public without expertise can easily inspect the privacy policy. In the experiment, how accurately the blacklist-based privacy policy and the GPT-based privacy policy classify safe and unsafe sentences and the time spent on classification was measured. According to the experimental results, the proposed technique showed 10.34% higher accuracy on average than the conventional blacklist-based sentence safety verification technique.

A Study on Estimating Housing Area per capita using Public Big Data - Focusing on Detached houses and Flats in Seoul - (공공빅데이터를 활용한 1인당 주거면적 추정에 관한 연구 - 서울의 단독 및 다세대 주택을 중심으로 -)

  • Lim, Jae-Bin;Lee, Sang-Hoon
    • Journal of the Korean Regional Science Association
    • /
    • v.36 no.1
    • /
    • pp.51-67
    • /
    • 2020
  • The purpose of this study is to estimate the housing area per capita for verifying if the public Big Data, of the building ledger and resident registration ledger, can be used as well as the National Census and Housing Survey. The Mankiw and Weil (MW) model was constructed by extracting samples of general detached houses and flat houses from the public big data, and compared with the result from traditional survey method. Then, the MW models of 25 municipalities in Seoul was established. As a result, it can be confirmed that it is possible to establish MW models comparable to regular surveys using public big data, and to establish a model for each basic localities which was difficult to use as a regular survey method. Public Big Data has the advantage of expanding the knowledge frontier, but there are some limitations because it uses data generated for other original purposes. Also, the difficult process of accessing personal information is a burden to carry out analysis. It is expected that continuing research should be needed on how public Big Data would be processed to complement or replace traditional statistical surveys.

Implementation of Water Depth Indicator using Contactless Smart Sensors (비접촉식 스마트센서 기반 수위측정 방법 구현)

  • Kim, Minhwan;Lee, Jinhee;Song, Giltae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.733-739
    • /
    • 2019
  • Water level measurement is highly demanding in IoT monitoring areas such as smart factory, smart farm, and smart fish farm. However, existing water level indicators are limited to be used in industrial fields as commercial products due to the high cost of sensors and the complexity of algorithms used. In order to solve these problems, our paper proposed methods using an infrared distance sensor as well as a hall sensor for the water level measurement, both of which are contactless smart sensors. Data errors caused by the inaccuracy of existing sensors were decreased by applying new simple structures so that versatility is enhanced. The performance of our method was validated using experiments based on simulations. We expect that our new water depth indicator can be extended to a general-purpose water level monitoring system based on IoT technology.

Extraction of Classification Boundary for Fuzzy Partitions and Its Application to Pattern Classification (퍼지 분할을 위한 분류 경계의 추출과 패턴 분류에의 응용)

  • Son, Chang-S.;Seo, Suk-T.;Chung, Hwan-M.;Kwon, Soon-H.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.685-691
    • /
    • 2008
  • The selection of classification boundaries in fuzzy rule- based classification systems is an important and difficult problem. So various methods based on learning processes such as neural network, genetic algorithm, and so on have been proposed for it. In a previous study, we pointed out the limitation of the methods and discussed a method for fuzzy partitioning in the overlapped region on feature space in order to overcome the time-consuming when the additional parameters for tuning fuzzy membership functions are necessary. In this paper, we propose a method to determine three types of classification boundaries(i.e., non-overlapping, overlapping, and a boundary point) on the basis of statistical information of the given dataset without learning by extending the method described in the study. Finally, we show the effectiveness of the proposed method through experimental results applied to pattern classification problems using the modified IRIS and standard IRIS datasets.

An Adaptive Decomposition Technique for Multidisciplinary Design Optimization (다분야통합최적설계를 위한 적응분해기법)

  • Park, Hyeong Uk;Choe, Dong Hun;An, Byeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.18-24
    • /
    • 2003
  • The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative sybcycles. Previous researches predifined the numbers of design processes in groups, but these group sizes should be determined optimally to balance the computing time of each groups. This paper proposes adaptive decomposition method, which determines the group sizes and the order of processes simultaneously to raise design efficiency by expanding the chromosome of the genetic algorithm. Finally, two sample cases are presented to show the effects of optimizing the sequence of processes with the adaptive decomposition method.

Efficient Load Balancing Scheme using Resource Information in Web Server System (웹 서버 시스템에서의 자원 정보를 이용한 효율적인 부하분산 기법)

  • Chang Tae-Mu;Myung Won-Shig;Han Jun-Tak
    • The KIPS Transactions:PartA
    • /
    • v.12A no.2 s.92
    • /
    • pp.151-160
    • /
    • 2005
  • The exponential growth of Web users requires the web serves with high expandability and reliability. It leads to the excessive transmission traffic and system overload problems. To solve these problems, cluster systems are widely studied. In conventional cluster systems, when the request size is large owing to such types as multimedia and CGI, the particular server load and response time tend to increase even if the overall loads are distributed evenly. In this paper, a cluster system is proposed where each Web server in the system has different contents and loads are distributed efficiently using the Web server resource information such as CPU, memory and disk utilization. Web servers having different contents are mutually connected and managed with a network file system to maintain information consistency required to support resource information updates, deletions, and additions. Load unbalance among contents group owing to distribution of contents can be alleviated by reassignment of Web servers. Using a simulation method, we showed that our method shows up to $50\%$ about average throughput and processing time improvement comparing to systems using each LC method and RR method.

Route Optimization Using a Limited Prefix Delegation Method in Multi-level Nested Mobile Network Environments (다단 중첩된 이동네트워크 환경에서 제한된 프리픽스 위임 방법을 이용한 경로최적화)

  • Song, Jung-Wook;Han, Sun-Young
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.4
    • /
    • pp.309-321
    • /
    • 2009
  • Nowadays, requests of connecting to the Internet while moving are increasing more and more, and various technologies have been developed for satisfying those requests. The IETF nemo WG standardized "Network Mobility Basic Support Protocol" for supporting mobile network through extending existing MIPv6 protocol for supporting host mobility. But, mobile networks can be nested while they are changing their location. And if they are multi -level nested, that causes some problems because of protocol characteristic. In this paper, we try to solve the problem that is complicated routing path caused by multi-level nesting of mobile networks with our limited prefix delegation method. We give a little modification to the standard protocol and add some functions to mobile router. With results from analysis, we could say that our method has better performance than other proposed methods.