Collaborative filtering technique is a major method of recommender systems and has been successfully implemented and serviced in real commercial online systems. However, this technique has several inherent drawbacks, such as data sparsity, cold-start, and scalability problem. Clustering-based collaborative filtering has been studied in order to handle scalability problem. This study suggests a collaborative filtering system which utilizes genetic algorithms to improve shortcomings of K-means algorithm, one of the widely used clustering techniques. Moreover, different from the previous studies that have targeted for optimized clustering results, the proposed method targets the optimization of performance of the collaborative filtering system using the clustering results, which practically can enhance the system performance.
Proceedings of the Korea Contents Association Conference
/
2016.05a
/
pp.53-54
/
2016
빅데이터란 대용량 데이터 활용 및 분석을 통해 가치 있는 정보를 추출하고, 이를 바탕으로 대응 방안 도출 또는 변화를 예측하는 기술을 의미한다. 그리고 빅데이터 분석에 활용되는 데이터인 페이스북과 같은 소셜 데이터, 유전자 발현과 같은 바이오 데이터, 항공망과 같은 지리정보 데이터들은 대용량 네트워크로 구성되어 있다. 네트워크 클러스터링은 서로 유사한 특성을 갖는 네트워크 내의 데이터들을 동일한 클러스터로 묶는 기법으로 네트워크 데이터를 분석하고 그 특성을 파악하는데 폭넓게 사용된다. 최근 빅데이터가 다양한 분야에서 활용되면서 방대한 양의 네트워크 데이터가 생성되고 있고, 이에 따라서 대용량 네트워크 데이터를 효율적으로 처리하는 클러스터링 기법의 중요성이 증가하고 있다. MCL(Markov Clustering) 알고리즘은 플로우 기반 무감독(unsupervised) 클러스터링 알고리즘으로 확장성이 우수해 다양한 분야에서 활용되고 있다. 하지만, MCL은 대용량 네트워크에 대해서는 많은 클러스터링 연산을 요구하며 너무 많은 클러스터를 생성하는 문제를 갖는다. 본 논문에서는 네트워크 압축을 기반으로 한 클러스터링 알고리즘을 제안함으로써 MCL보다 클러스터링 속도와 정확도를 향상시켰다. 또한, 희소행렬을 효율적으로 저장하는 CSC(Compressed Sparse Column) 자료구조와 MapReduce 기법을 제안한 클러스터링 알고리즘에 적용함으로써 대용량 네트워크에 대한 클러스터링 속도를 향상시켰다.
Proceedings of the Korean Information Science Society Conference
/
1999.10c
/
pp.605-607
/
1999
직렬 버스는 예약 대역폭을 보장해 주는 등시성 전송모드를 제공하고 있지만 실시간 가변비트율(VBR)의 데이터를 전송할 경우 많은 대역폭이 낭비되는 문제점을 가지고 있다. 본 논문은 이러한 문제를 개선하기 위하여 예약된 등시성 전송에는 영향을 주지 않으면서 남아있는 가용 등시성 대역폭을 이용하여 실시간 VBR 데이터를 효과적으로 전송하는 기법에 대한 것이다. 제안된 전송기법의 유용성을 확인하기 위하여 자체 개발한 1394 버스 시뮬레이터상에서 다수의 MPEG 비디오 데이터를 가지고 실험을 하였다. 실험 결과, 제안기법을 사용할 경우 전송 지연을 발생시키지 않고 등시성 대역폭을 평균 비트율 수준까지 낮추어 할당할 수 있음을 확인하였다.
Journal of the Korean Data and Information Science Society
/
v.12
no.2
/
pp.95-102
/
2001
최적의 SVM 가중치를 선택하는 방법 중에서 메모리와 속도의 문제를 해결하는 방법 중 하나가 커널애더트론 방법(Kernel Adatron, KA)이다. 본 연구에서는 KA방법을 제곱무감각손실함수까지 확장을 한 알고리즘을 개발한다. 그리고 추정해야 될 라그랑제 배수(Lagrange multiplier)의 수를 반으로 줄이는 알고리즘을 제시한다. 그리고 제시된 알고리즘의 효율성을 여러 모의실험을 통해서 입증한다.
최근 빅데이터 문제를 해결하기 위해 하둡의 사용이 급증하였다. 하둡은 다수의 노드에 데이터를 분산 저장 및 처리하며, 이를 위해 모든 메타데이터를 네임노드에서 관리한다. 기존 하둡은 모든 메타데이터를 메모리 상에서 관리하며, 변경 이력을 로컬 파일 시스템에서 별도의 파일로 관리한다. 이 방법에서는 데이터의 증가 및 하둡 에코시스템의 확장 등의 이유로 관리되어야 할 메타데이터가 크게 증가하며, 이는 곧 네임노드의 메모리 부하를 높이는 문제가 있다. 본 논문은 이러한 인메모리 기반의 하둡 메타데이터 관리 구조를 RDBMS 기반으로 수정하도록 설계 및 구현한다. 그리고 하둡의 모든 명령어에 대한 테스트를 작성하여 본 연구의 적정성을 검토하였다. 본 논문은 네임노드의 부하를 줄임으로써 하둡의 안정성을 높이는 좋은 연구 결과라 사료된다.
The research area for solving question answering (QA) problems using artificial intelligence models is in a methodological transition period, and one such architecture, the dynamic memory network (DMN), is drawing attention for two key attributes: its attention mechanism defined by neural network operations and its modular architecture imitating cognition processes during QA of human. In this paper, we increased accuracy of the inferred answers, by adapting an automatic data augmentation method for lacking amount of training data, and by improving the ability of time perception. The experimental results showed that in the 1K-bAbI tasks, the modified DMN achieves 89.21% accuracy and passes twelve tasks which is 13.58% higher with passing four more tasks, as compared with one implementation of DMN. Additionally, DMN's word embedding vectors form strong clusters after training. Moreover, the number of episodic passes and that of supporting facts shows direct correlation, which affects the performance significantly.
The Journal of Information Technology and Database
/
v.4
no.1
/
pp.3-17
/
1997
지리정보 시스템에 기반한 응용 시스템 개발에 있어 필수적인 기능으로 지도작성, 데이터 관리, 해석 기능 외에 지식 표현 및 추론 기능을 들 수 있다. 본 논문에서는 지식베이스 관리 및 연역 추론 기능을 갖는 지식기반 지리정보 시스템의 개발과 연역 기능을 활용한 시스템 기능 확장에 대하여 논한다. 본 시스템에서는 사용자 인터페이스(Vusual Basic), 지리정보 시스템(ArcView, ArcInfo), 추론 시스템(Eclipse)을 상호 밀결합 방식으로 결합, 구현하였으며, 각 서브 시스템은 서로 중간파일 시스템의 사용없이 데이터 및 명령어의 전송 및 공유가 가능하다. 또한 사용자는 사용자 인터페이스를 통하여 개개의 서브 시스템을 인식하지 않고 단일화된 환경하의 작업이 가능하다. 시스템의 연역 기능은 일반적으로 거론되는 지식베이스 관리, 의사결정 지원 기능 외에도 사용자 환경개선, 복합 공간 객체의 표현, 공간질의 연산자 구현 등의 시스템 기능 확장에 활용될 수 있다. 특히 본 시스템에서는 사용자 환경개선에 초점을 맞추어 사용자가 정보의 내부 구조나 문제 영역, 명령어 사용 방법 등을 잘 알지 못하더라도 유용한 정보를 얻도록 지원, 유도하는 협력질의 응답 기능과 명령어 자동 생성 기능을 제공한다. 또한 본 논문에서는 이들 방식을 이용한 두가지 응용 시스템(여행정보 시스템, 환경관리 시스템)의 구현 예를 들어 본 시스템의 실용성과 유용성을 보인다.
기존 군사 분야 영상 판독 시스템은 영상 판독관들의 작업 부담이 크고, 판독관들의 경험과 숙련도에 의존적이다. 이전 연구에서 판독관들의 부담을 줄이고 경험 및 숙련 의존도를 낮추기 위해 문장 추천 시스템을 제안하였다. 하지만 학습에 사용된 데이터의 양이 적고, 학습에 사용되지 않은 장비 혹은 지역 등의 단어가 등장 시 제대로 동작하지 않는 한계점이 있었다. 이를 해결하기 위해 학습 데이터 단계와 디코딩 단계에 지식그래프를 적용하여 문장의 다양성과 확장성을 확보하고, 데이터 부족 문제를 완화하였다. 이 연구는 추후 판독관들의 업무 과부화를 완화하고 업무 효율을 높일 수 있을 것이다.
블록체인 원장의 용량이 폭증하면서 여러 확장성 문제들이 나타나고 있다. 이에 대한 해결 방법으로 원장에 Reed-Solomon 부호화를 적용하여 용량을 줄이려는 연구가 일부 진행 중이나, 피어에 장애가 발생하거나 악의적 행동이 있다면, 데이터 손실을 막기 위한 복구 과정이 필수적이다. 본 논문에서는 원장에 Reed-Solomon 부호화를 적용해 얻는 저장 공간의 감소 효과에 비해서 데이터를 복구할 시 어느 정도의 오버헤드가 발생하는지 성능 평가를 수행했다. 결과적으로, 많은 블록 복구가 필요한 상황에서 인코딩/디코딩 시간은 미미하였고, 대부분의 오버헤드는 청크 재전송 시간이었다.
Recently, due to the popularity and explosive growth of the Internet, information exchange is increasing dramatically over the Internet. Also the XML is becoming a standard as well as a major tool of data exchange on the Internet. so that in retrieving the XML document. the problem for speeding up evaluation of path-oriented queries is a main issue. In this paper, we propose a new indexing technique to advance the searching performance of path-oriented queries in document databases. In the new indexing technique, an abbreviation-path file to perform path-oriented queries efficiently is generated which is able to use its hash-code value to index keys. Also this technique can be further enhanced by combining the Extendible Hashing technique with the abbreviation path file to expedite a speed up evaluation of retrieval.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.