딥러닝을 적용한 기술 중 숫자 인식으로 예를 들 수 있다. 숫자 인식을 통하여 여러 분야에서 활용이 되고 있다. 숫자 인식을 가능하게 한 알고리즘 중 합성곱 신경망이 있다. 합성곱 신경망은 다양한 데이터들을 인식하는 데 사용되고 있다. MNIST 숫자 데이터셋을 활용하여 합성곱 신경망 구현 과정 중 깊게 레이어층을 쌓을수록 성능향상을 기대해볼 수 있다. 본 논문에서는 합성곱 레이어를 추가함으로써 성능향상을 76.96%에서 98.87의 정확도가 산출되어 약 21.91%의 정확도가 향상됨을 확인하였다.
본 연구는 일반적인 성능의 PC와 모바일 디바이스를 사용하여 다양한 동영상 데이터, 문서 데이터, 각종 카메라 디바이스로부터 입력되는 비디오 스트리밍 데이터와 오디오 스트리밍 데이터를 실시간에 가까운 빠른 시간 안에 효율적으로 편집하고 방송하는 기술을 개발하는 것을 목적으로 한다. 본 연구에서는 두 개의 알고리즘을 개발하였는 데, 입력되는 여러 가지 형태의 여러 개의 동영상을 실시간에 합성하기 위하여 대략적 최적화 방법과 메모리 큐를 이용한 순차적 합성 방법이다. 본 연구에서 개발한 시스템은 강사가 동영상 강의 콘텐츠를 제작할 때 모바일 기기 또는 PC를 사용할 수 있으므로 보다 비용 측면에서 효율적이며 유용하다. 본 연구에서 개발한 시스템은 교육 분야뿐 만 아니라 동영상 합성 및 편집이 필요한 다양한 분야에서 매우 유용하게 사용될 수 있으므로 응용 분야가 넓을 것으로 판단된다.
본 논문에서는 안저영상의 다중 스케일 정보를 다루기 위한 딥러닝 기반의 망막 혈관 분할 모델을 제안한다. 제안 모델은 이미지 분할 딥러닝 모델인 U-Net과 선택적 커널 합성곱을 통합한 합성곱 신경망으로 안저영상에서 눈과 관련된 질병을 진단하는데 중요한 정보가 되는 망막 혈관의 다양한 모양과 크기를 갖는 특징 정보를 추출하고 분할한다. 제안 모델은 일반적인 합성곱과 선택적 커널 합성곱으로 구성된다. 일반적인 합성곱 층은 같은 크기 커널 크기를 통해 정보를 추출하는 반면, 선택적 커널 합성곱은 다양한 커널 크기를 갖는 브랜치들에서 정보를 추출하고 이를 분할 주의집중을 통해 적응적으로 조정하여 결합한다. 제안 모델의 성능 평가를 위해 안저영상 데이터인 DRIVE와 CHASE DB1 데이터셋을 사용하였으며 제안 모델은 두 데이터셋에 대하여 F1 점수 기준 82.91%, 81.71%의 성능을 보여 망막 혈관 분할에 효과적임을 확인하였다.
텍스트 데이터는 일반적으로 많은 다양한 단어들로 구성되어 있다. 평범한 텍스트 데이터의 경우에도 수만 개의 서로 다른 단어들을 포함하고 있는 경우를 흔히 관찰할 수 있으며 방대한 양의 텍스트 데이터에서는 수십만 개에 이르는 고유한 단어들이 포함되어 있는 경우도 있다. 텍스트 데이터를 전처리하여 문서-단어 행렬을 만드는 경우 고유한 단어를 하나의 변수로 간주하게 되는데 이렇게 많은 단어들을 각각 하나의 변수로 간주한다면 텍스트 데이터는 매우 많은 변수를 가진 데이터로 볼 수 있다. 한편, 텍스트 데이터의 분류 문제에서는 분류의 목표변수가 되는 범주의 비중에 큰 차이가 나는 불균형 데이터 문제를 자주 접하게 된다. 이렇게 범주의 비중에 큰 차이가 있는 불균형 데이터의 경우에는 일반적인 분류모형의 성능이 크게 저하될 수 있다는 사실이 잘 알려져 있다. 따라서 불균형 데이터에서의 분류 성능을 개선하기 위해 소수집단의 관측값들을 합성하여 소수집단에 포함되는 새로운 관측값을 생성하는 합성과표집기법(synthetic over-sampling technique; SMOTE) 등의 알고리즘을 적용할 수 있다. SMOTE는 k-최근접이웃(k-nearset neighbor; kNN) 알고리즘을 이용하여 새로운 합성 데이터를 생성하는데 텍스트 데이터와 같이 많은 변수를 가진 데이터의 경우에는 오차가 누적되어 kNN의 성능에 문제가 생길 수 있다. 이 논문에서는 변수선택을 통해 변수가 많은 불균형 텍스트 데이터를 오차가 축소된 공간에 표현하고 이 공간에서 새로운 합성 관측값을 생성하여 불균형 텍스트 데이터에서 소수 범주에 대한 SVM 분류모형의 예측 성능을 향상시키는 방법을 제안한다.
상위 수준 합성 과정에서 스케줄링은 하드웨어 동작을 표현한 연산들이 주어진 제약 조건을 만족하며 최적의 제어단계에 배정되도록 하는 과정이며 스케줄 결과는 목적 하드웨어의 면적과 실행속도에 많은 영향을 준다. 파이프 라인은 순차적인 데이터 입력을 중첩 수행하여 실행 속도와 자원 이용률을 동시에 증가시키는 방법이다. 상위 수준에서 파이프라인 데이터 패스를 합성하기 위한 기존의 스케줄링 알고리즘들은 고정된 데이터 입력 간 격열을 기반으로 제안된 것이 대부분이며, 가변 데이터 입력 간격을 지원하는 스케줄링 알고리즘으로는 시간 제약 하의 자원최소화 알고리즘[5]이 제안되었다. 본 논문에서는 가변데이터 입력 간격을 지원하는 자원 제약하의 실행 시간 최소화 알고리즘을 제안한다. 이를 위해 연산의 스테이지 인덱스가 초기에 고정되는 시간제약하의 스케줄링 알고리즘[5]을 응용하여 자원제약하의 스케줄 진행과정에서 증가되는 제어단계에 따라 스테이지 인덱스가 변경 될 수 있도록 하고 점진적인 모빌리티 축소에 의해 스케줄한다. 제안된 스케줄링 알고리즘의 실험 결과는 다양한 자원제약과 입력 간격렬에 대하여 제약조건을 만족하는 효과적인 스케줄 결과를 유도한다.
데이터 랭글링은 원시 데이터를 분석하기에 더 적합한 형태로 변환하는 프로세스를 말한다. 본 논문에서는 프로그램 합성 기술을 이용하여 테이블 데이터에 대하여 사용자의 의도를 만족하는 데이터 랭글링 프로그램을 자동 생성하는 방법을 제안한다. 제안하는 방법은 입/출력 테이블 예시를 명세로 받아 연산자 시퀸스를 탐색한다. 실험을 통해 제안하는 방법이 빠른 시간 안에 정확한 데이터 랭글링 프로그램을 학습할 수 있음을 보였다.
마스크 쓴 얼굴에 대해 랜드마크 분석을 진행하기 위해서는 대량의 마스크가 착용된 얼굴 데이터셋이 필요하다. 본 논문에서는 공개된 얼굴 데이터셋에 자동으로 마스크를 합성하여 대량의 마스크를 착용한 얼굴 데이터셋을 생성하는 시스템을 제안한다. 마스크는 얼굴의 많은 부분을 가리는 물체이다. 따라서 마스크를 쓴 얼굴에 대해서는 일반적인 얼굴 데이터셋으로 학습된 landmark detector가 잘 작동하지 않는다. landmark detector가 잘 작동하게 하려면 마스크를 쓴 얼굴에 대해서 학습을 시켜야 한다. 그러나 현재 마스크를 쓴 얼굴 이미지와 풍부한 landmark 정보를 함께 가지고 있는 데이터셋이 존재하지 않기 때문에 학습에 어려움이 있다. 이 문제를 해결하기 위해 마스크 얼굴 이미지 데이터셋을 만들어내는 방법을 제안하고 마스크를 착용한 얼굴에도 잘 작동하는 랜드마크 검출기를 학습시켜 그 효용을 입증하였다.
가상환경의 실시간 운동감을 제공하는 차량 시뮬레이터 기술에 있어, 그 현실성 제고를 위한 다양한 연구가 수행되어 왔으며, 최근에는 실제 대상의 운동감을 기록하고 이를 재생하는, 데이터기반 운동감 생성 시스템이 개발되었다. 이 방법은 실제 운동감을 제공하므로, 현실성 확보가 용이하나, 사용자와의 상호 작용이 없는 단순한 가상 컨텐츠의 제공 단계에 머물고 있다. 본 연구에서는, 컴퓨터 그래픽스 분야에서 활발히 연구되고 있는, 모션 캡쳐 데이터의 가공 및 합성 기술을 차량 시뮬레이터 구동 과정에 도입하여, 제어가 가능한, 실 데이터 기반 운동감을 생성하는, 새로운 방법을 제안하고자 한다. 이 방법은, 실제 차량의 운동데이터를 획득하고, 적절한 형태의 데이터 구조(운동감 조각)로 변환하여 데이터베이스에 저장하며, 실시간 시뮬레이션 시, 최적의 운동감 조각을 검색하고 합성하여 운동감 스트림을 제공하는 방법으로서, 현재의 시뮬레이션 상태 및 사용자의 요구 사항을 매개변수화 하여, 현실과 가장 가까운 운동감 생성방법을 제공한다. 또한, 차량 운동감 생성 시스템의 개발 및 모션 베이스 구동 실험을 통해, 제안한 방법에 의한 운동감의 현실성 제고 방안에 대해 소개하고자 한다.
본 논문에서는 기존의 연구를 극복하여 단일 영상이 아닌 단안 비디오로부터 5D 라이트필드 영상을 합성하는 딥러닝 프레임워크를 제안한다. 현재 일반적으로 사용 가능한 Lytro Illum 카메라 등은 초당 3프레임의 비디오만을 취득할 수 있기 때문에 학습용 데이터로 사용하기에 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 가상 환경 데이터를 구성하며 이를 위해 UnrealCV를 활용하여 사실적 그래픽 렌더링에 의한 데이터를 취득하고 이를 학습에 사용한다. 제안하는 딥러닝 프레임워크는 두 개의 입력 단안 비디오에서 $5{\times}5$의 각 SAI(sub-aperture image)를 갖는 라이트필드 비디오를 합성한다. 제안하는 네트워크는 luminance 영상으로 변환된 입력 영상으로부터 appearance flow를 추측하는 플로우 추측 네트워크(flow estimation network), appearance flow로부터 얻어진 두 개의 라이트필드 비디오 프레임 간의 optical flow를 추측하는 광학 플로우 추측 네트워크(optical flow estimation network)로 구성되어있다.
본 논문은 분산 시스템에서의 표준합성환경 기반 수중 교전 시뮬레이션을 위한 방법론이다. 수중 교전 시뮬레이션의 경우 염분과 수온 등의 수중 환경 데이터를 시뮬레이션에 반영하는 것이 중요하다. 분산 시뮬레이션 시스템에서 이러한 환경 데이터의 재사용성과 상호운용성 향상을 위해 합성 환경 표현 및 교환 표준(Synthetic Environmental Data Representation and Interchange Specification, SEDRIS(ISO standard for environmental data))이 개발되었고, 본 논문에서는 SEDRIS를 활용하여 수중 합성환경을 구축한다. 본 논문을 통해 SEDRIS가 합성환경 데이터의 국제 표준이지만 그 방대함과 복잡함으로 인하여 사용이 저해된 문제점을 대기/해양 환경에 대해 효율적인 SEDRIS 기술 활용 방법을 제시하여 해결한다. 본 논문의 최종 목적은 대기/해양 환경 표현을 위한 다차원 격자 기반의 SEDRIS 구조를 구축하고, High Level Architecture (HLA)/Run-Time Infrastructure (RTI) 기반의 분산 시스템에서 대기/해양 합성전장환경 구축에 SEDRIS 적용 방법을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.