• 제목/요약/키워드: 데이터 편향성

Search Result 42, Processing Time 0.032 seconds

Automatic Bias Classification of Political News Articles by using Morpheme Embedding and SVM (형태소 임베딩과 SVM을 이용한 뉴스 기사 정치적 편향성의 자동 분류)

  • Cho, Dan-Bi;Lee, Hyun-Young;Park, Ji-Hoon;Kang, Seung-Shik
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.451-454
    • /
    • 2020
  • 딥러닝 기술을 이용한 정치적 성향의 편향성 분류를 위하여 신문 뉴스 기사를 수집하고, 머신러닝을 위한 학습 데이터를 구축하였다. 학습 데이터의 구축은 보수 성향과 진보 성향을 대표하는 6개 언론사의 뉴스에서 정치적 성향을 이진 분류 데이터로 구축하였다. 뉴스 기사의 수집 방법으로 최근 이슈들 중에서 정치적 성향과 밀접하게 관련이 있는 키워드 15개를 선정하고 이에 관한 뉴스 기사들을 수집하였다. 그 결과로 11,584개의 학습 및 실험용 데이터를 구축하였으며, 정치적 편향성 분류를 위한 머신러닝 모델을 설계하였다. 머신러닝 기법으로 학습 및 실험을 위해 형태소 단위의 임베딩을 이용하여 문장 및 문서 임베딩으로 확장하였으며, SVM(Support Vector Machine)을 이용하여 정치적 편향성 분류 실험을 수행한 결과로 75%의 정확도를 달성하였다.

Recommendations for the Construction of a Quslity-Controlled Stress Measurement Dataset (품질이 관리된 스트레스 측정용 테이터셋 구축을 위한 제언)

  • Tai Hoon KIM;In Seop NA
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2024
  • The construction of a stress measurement detaset plays a curcial role in various modern applications. In particular, for the efficient training of artificial intelligence models for stress measurement, it is essential to compare various biases and construct a quality-controlled dataset. In this paper, we propose the construction of a stress measurement dataset with quality management through the comparison of various biases. To achieve this, we introduce strss definitions and measurement tools, the process of building an artificial intelligence stress dataset, strategies to overcome biases for quality improvement, and considerations for stress data collection. Specifically, to manage dataset quality, we discuss various biases such as selection bias, measurement bias, causal bias, confirmation bias, and artificial intelligence bias that may arise during stress data collection. Through this paper, we aim to systematically understand considerations for stress data collection and various biases that may occur during the construction of a stress dataset, contributing to the construction of a dataset with guaranteed quality by overcoming these biases.

A Study on Impacts of De-identification on Machine Learning's Biased Knowledge (머신러닝 편향성 관점에서 비식별화의 영향분석에 대한 연구)

  • Soohyeon Ha;Jinsong Kim;Yeeun Son;Gaeun Won;Yujin Choi;Soyeon Park;Hyung-Jong Kim;Eunsung Kang
    • Journal of the Korea Society for Simulation
    • /
    • v.33 no.2
    • /
    • pp.27-35
    • /
    • 2024
  • We aimed to shed light on the issue of perpetuating societal disparities by analyzing the impact of inherent biases present in datasets used for training artificial intelligence models on the predictions generated by Artificial Intelligence(AI). Therefore, to examine the influence of data bias on AI models, we constructed an original dataset containing biases related to gender wage gaps and subsequently created a de-identified dataset. Additionally, by utilizing the decision tree algorithm, we compared the outputs of AI models trained on both the original and de-identified datasets, aiming to analyze how data de-identification affects the biases in the results produced by artificial intelligence models. Through this, our goal was to highlight the significant role of data de-identification not only in safeguarding individual privacy but also in addressing biases within the data.

Automatic Classification and Vocabulary Analysis of Political Bias in News Articles by Using Subword Tokenization (부분 단어 토큰화 기법을 이용한 뉴스 기사 정치적 편향성 자동 분류 및 어휘 분석)

  • Cho, Dan Bi;Lee, Hyun Young;Jung, Won Sup;Kang, Seung Shik
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In the political field of news articles, there are polarized and biased characteristics such as conservative and liberal, which is called political bias. We constructed keyword-based dataset to classify bias of news articles. Most embedding researches represent a sentence with sequence of morphemes. In our work, we expect that the number of unknown tokens will be reduced if the sentences are constituted by subwords that are segmented by the language model. We propose a document embedding model with subword tokenization and apply this model to SVM and feedforward neural network structure to classify the political bias. As a result of comparing the performance of the document embedding model with morphological analysis, the document embedding model with subwords showed the highest accuracy at 78.22%. It was confirmed that the number of unknown tokens was reduced by subword tokenization. Using the best performance embedding model in our bias classification task, we extract the keywords based on politicians. The bias of keywords was verified by the average similarity with the vector of politicians from each political tendency.

A Study on Risks of Big Data (빅데이터의 위험 요소에 대한 고찰)

  • Yoonsoo Cheon;Jaekyung Park
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.631-633
    • /
    • 2023
  • 본 논문에서는 빅데이터의 활용이 확산되는 현대 사회에서 빅데이터의 수집, 관리, 이용 등에서 나타날 수 있는 문제를 확인하고 그 문제에 대한 기존의 대응 방법과 보완점을 시사한다. 빅데이터의 위험성은 개인 정보유출, 디지털 디바이드, 편향성과 신뢰성, 의존성과 통제 가능성 등이 있다. 해당 문제는 빅데이터의 보편화가 가중될수록 큰 규모의 사회적 문제로 대두될 가능성이 높다. 이를 보완하기 위한 대응 방법을 크게 기술적 대응, 법적 대응, 사회적 대응으로 나누어 알아보고 각 부분의 취약점을 분석하여 개선의 방향을 제시한다.

  • PDF

Data Bias Optimization based Association Reasoning Model for Road Risk Detection (도로 위험 탐지를 위한 데이터 편향성 최적화 기반 연관 추론 모델)

  • Ryu, Seong-Eun;Kim, Hyun-Jin;Koo, Byung-Kook;Kwon, Hye-Jeong;Park, Roy C.;Chung, Kyungyong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.1-6
    • /
    • 2020
  • In this study, we propose an association inference model based on data bias optimization for road hazard detection. This is a mining model based on association analysis to collect user's personal characteristics and surrounding environment data and provide traffic accident prevention services. This creates transaction data composed of various context variables. Based on the generated information, a meaningful correlation of variables in each transaction is derived through correlation pattern analysis. Considering the bias of classified categorical data, pruning is performed with optimized support and reliability values. Based on the extracted high-level association rules, a risk detection model for personal characteristics and driving road conditions is provided to users. This enables traffic services that overcome the data bias problem and prevent potential road accidents by considering the association between data. In the performance evaluation, the proposed method is excellently evaluated as 0.778 in accuracy and 0.743 in the Kappa coefficient.

반응편향성을 내포한 리커트형 척도 자료의 분석방법 - 통계 상담 사례 연구 -

  • Kim, Sang-Ryong;Jo, Gil-Ho;Lee, Su-Hyeong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.5 no.2
    • /
    • pp.107-116
    • /
    • 1994
  • 이 논문은 통계상담사례연구의 일종으로 설문지를 이용한 통계자료분석에 도움이 되도록 소개하고자 한다. 여러항목을 종합하여 한 척도를 구성하고 각 항목마다 중요도나 선호도 등에 따라 다품등 리커트형 척도를 묻는 자료는 개인의 성향이나 지리적 문화적 여건에 따라 그 응답경향이 달라 가질지도 모르는 반응편향성(Response Set Bias)을 감소시켜 보다 좋은 통계자료분석을 할 수 있는 통계적 방법을 소개하며, 이 방법을 적용시킨 통계상담을 예시하고자 한다.

  • PDF

Measurement of Political Polarization in Korean Language Model by Quantitative Indicator (한국어 언어 모델의 정치 편향성 검증 및 정량적 지표 제안)

  • Jeongwook Kim;Gyeongmin Kim;Imatitikua Danielle Aiyanyo;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.16-21
    • /
    • 2022
  • 사전학습 말뭉치는 위키백과 문서 뿐만 아니라 인터넷 커뮤니티의 텍스트 데이터를 포함한다. 이는 언어적 관념 및 사회적 편향된 정보를 포함하므로 사전학습된 언어 모델과 파인튜닝한 언어 모델은 편향성을 내포한다. 이에 따라 언어 모델의 중립성을 평가할 수 있는 지표의 필요성이 대두되었으나, 아직까지 언어 인공지능 모델의 정치적 중립성에 대해 정량적으로 평가할 수 있는 척도는 존재하지 않는다. 본 연구에서는 언어 모델의 정치적 편향도를 정량적으로 평가할 수 있는 지표를 제시하고 한국어 언어 모델에 대해 평가를 수행한다. 실험 결과, 위키피디아로 학습된 언어 모델이 가장 정치 중립적인 경향성을 나타내었고, 뉴스 댓글과 소셜 리뷰 데이터로 학습된 언어 모델의 경우 정치 보수적, 그리고 뉴스 기사를 기반으로 학습된 언어 모델에서 정치 진보적인 경향성을 나타냈다. 또한, 본 논문에서 제안하는 평가 방법의 안정성 검증은 각 언어 모델의 정치적 편향 평가 결과가 일관됨을 입증한다.

  • PDF

A Study on PCA using Adaptive Correlation (적응적 상관도를 이용한 주성분 분석에 관한 연구)

  • Ko, Myung-Sook
    • Annual Conference of KIPS
    • /
    • 2020.05a
    • /
    • pp.13-14
    • /
    • 2020
  • 고차원의 데이터를 처리하기 위해서는 데이터의 성질을 유지하면서 특징을 잘 반영할 수 있는 특징 추출 방법이 필요하며 주성분분석 방법은 대표적인 특징 추출 방법이다. 본 연구에서는 데이터가 고차원인 경우 데이터 특징 추출을 위한 주성분 분석의 주성분 변수 선정시 적응적 상관도(Correlation)를 기반으로 한 주성분 분석 방법을 제안한다. 제안하는 방법은 입력 데이터간의 상관관계를 기반으로 상관도를 적응적으로 반영하여 데이터의 주성분을 분석함으로써 실제 데이터의 특징을 나타내는 세분화 변수 선정 시 데이터 편향성의 영향을 줄이기 위한 방법이다.

Modeling of Data References with Temporal Locality and Popularity Bias (시간 지역성과 인기 편향성을 가진 데이터 참조의 모델링)

  • Hyokyung Bahn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.119-124
    • /
    • 2023
  • This paper proposes a new reference model that can represent data access with temporal locality and popularity bias. Among existing reference models, the LRU-stack model can express temporal locality, which is a characteristic that the more recently referenced data has, the higher the probability of being referenced again. However, it cannot take into account differences in popularity of the data. Conversely, the independent reference model can reflect the different popularity of data, but has the limitation of not being able to model changes in data reference trends over time. The reference model presented in this paper overcomes the limitations of these two models and has the feature of reflecting both the popularity bias of data and their changes over time. This paper also examines the relationship between the cache replacement algorithm and the reference model, and shows the optimality of the proposed model.