다중 데이터베이스 미들웨어 시스템은 기존에 이미 개발되어 사용되고 있는 여러 상이한 데이터베이스 시스템을 상향식 기법으로 통합하여 기존 데이터베이스 시스템에 아무런 수정을 가하지 않고도 사용자에게 단일한 인터페이스로 동시에 여러 데어터베이스에 접근할 수 있도록 하는 시스템이다. 이러한 데이터 통합 미들웨어 시스템은 ERP/CRM/DW/전잔상거래 등 여러종류의 데이터 저장소를 통합 접근해야 하는 분야에서 유용하게 사용된다. 본 논문에서는 한국통신에서 개발된 다중 데이터베이스 시스템인 MDATA를 종합망관리시스템 구축에 이용한 사례를 통하여 데이터 통합 미들웨어 시스템의 적용사례 및 그 유용성을 제시한다.
The customer-focused enterprise is interested in integrating every record of an interaction with a customer. This study is to investigate the structural relationship of data integration customer analysis capability, marketing & sales capability, customer service capability, and CRM performance. 205 survey data were collected from the company which implemented the CRM package. SEM analysis shows that data integration has influence on the CRM performance through the improvement of customer analysis capability, marketing 8t sales capability, and customer service capability. The revised model for further goodness-fitting model shows that data integration has influence on the improvement of customer analysis capability, marketing & sales capability, and customer service capability. but customer analysis capability has indirect influence on CRM performance through the improvement of marketing & sales capability, customer service capability.
CRM이 기업의 핵심 경영전략으로 도입되면서 기업이 보유하고 있는 고객데이터를수집, 통합, 가공, 분석하여 마케팅을 위해 활용하고자 하는 시도가 계속되고 있다. 특히, 기존고객의 유지 전략과 기존고객을 활용한 신상품 유도 전략이 중요한 이슈로 대두되면서 마이닝을 통한 CRM관점의 고객이탈방지는 각 통신사에서 지속적으로 추진하고 있는 분야이다. 본 연구에서는 KT의 고객이탈방지 모텔 구축을 사례로 효율적인 마이닝 모델 구축을 위한 고객통합구조를 제안하고자 한다. 그러고, 고객이탈방지 모델 구축의 전처리 과정으로 고객통합구조를 적용하여 고객중심의 변수 도출, 이용행태 추적 등을 통해 의미 있는 해지변수를 찾아내는 방법과 그 효과에 대해 기술한다.
이탈 고객 예측은 데이터 마이닝에서 다루는 주요한 문제 중에 하나이다. 이탈 고객 예측은 일종의 분류(classification) 문제로 의사결정나무추론, 로지스틱 회귀분석, 인공신경망 등의 기법이 많이 활용되어왔다. 일반적으로 이탈 고객 예측을 위한 모델은 고객의 인구통계학적 정보와 계약이나 거래 정보를 입력변수로 하여 이탈 여부를 목표변수로 보는 형태로 분류 모델을 생성하게 된다. 본 연구에서는 고객과의 지속적인 접촉으로 발생되는 추가적인 사건 정보를 활용하여 연관성 규칙을 생성하고 이 결과를 기존의 방식으로 생성된 분류 모델과 결합하는 이탈 고객 예측 방법을 제시한다. 제시한 방법의 유용성을 확인하기 위해서 특정 국내 신용카드사의 실제 데이터를 활용하여 실험을 수행하였다. 실험 결과 제시된 방법이 기존의 전통적인 분류 모델에 비해서 향상된 성능을 보이는 것을 확인할 수 있었다. 제시된 예측 방법의 장점은 기존의 이탈 예측을 위한 입력 변수들 이외에 고객과 회사간의 접촉을 통해서 생성된 동적 정보들을 통합적으로 활용하여 예측 정확도를 높이고 실시간으로 이탈 확률을 갱신할 수 있다는 점이다.
한국데이타베이스학회 2001년도 춘계 Conference: CRM과 DB응용 기술을 통한 e-Business혁신
/
pp.213-234
/
2001
1. Brokat Server Technologies (Channel 통합 Messging Server) 복잡한 메시지 교환을 유연하게 제어함으로써 Front-End/Back-End각각에 존재하는 다양한 채널을 RealTime으로, 유연하게 통합관리하여 채널간의 Messaging을 Smart하게 컨트롤 2. Brokat Advisor (Rulebase Management System) 복잡한 비즈니스 룰의 적용과 Non-Programming/다이나믹한 관리를 동시에 가능하게 하는 Large E Business Engine (중략)
본 연구에서는 고객 세분화를 위하여 고객프로필과 사이트 접속자료를 통합, 분석하는 분석적 CRM을 시도하였다. 실제 고객 데이터를 분석하여 고객의 특성과 기호, 방문행태 등을 이해할 수 있다면 이를 기반으로 고객 세분화(segmentation)가 가능할 것이다. 예를 들어 고객의 거주지, 재산정도, 교육수준, 연령 등 인적정보를 토대로 동일 사이트에 접속하는 고객의 공통점을 찾게 된다면 이들 고객에 접근할 수 있는 적절한 마케팅 미디어가 무엇인지, 어느 페이지에 홍보물을 게재하는 것이 효과적일 것인가 등을 결정하는 데 도움을 줄 수 있을 것이다. 한편 웹 기반 마이닝의 핵심은 웹으로 부터의 자료를 어떻게 하면 효율적으로 수집할 것인가, 또한 이렇게 수집된 자료를 다양한 (multiple) DB와 어떻게 통합하고 분석하여 필요한 정보를 추출할 것인가 일 것이다. 본 연구에서는 실제 인터넷 사업자의 사용자 그룹의 비율에 따라 구성된 패널을 활용하여 효율적인 자료수집 방안을 모색하였다. 패널 구성원에 대한 웹 데이터를 수집함으로써 신뢰성과 대표성을 확보하면서 분석대상 자료의 양을 적절한 수준으로 유지할 수 있었다. 또한 고객자료 분석에서는 OLAP과 데이터 마이닝 기법(의사결정나무)을 동시에 사용하여 그 분석 결과를 비교함으로써 각 기법의 결과를 상호 확인하고 보완할 수 있었다. 이 결과는 데이터 마이닝 기법에 의해서 발견된 패턴을 분석하고 확인하는 작업에서 OLAP이 유용하게 사용될 수 있다는 과거 연구의 주장을 확인하였다.
세계는 지식정보사회(knowledge information society)에 돌입하였다. 정보기술은 지식경영을 등장시킨 요인중의 하나이며 지식경영발전을 가속화시키는 원동력이라고 볼 수 있다. 그리고 최근 정보기술과 인터넷은 눈부신 발전을 해오고 있다. 따라서 본 연구는 급변하는 디지털 환경하의 방대한 인터넷 데이터에서 웹 데이터 마이닝을 통해 고객에 대한 숨겨진 지식을 창출하고, 그 지식을 지식경영프레임웍에 적용한 지식-기반디자인 패러다임을 구축하여 디지털 환경에서 실시간에 고객에 대한 유용한 지식을 창출하여 고객의 욕구를 충족시키는 디자인을 개발 할 수 있도록 하는데 목적이 있다. 연구의 목적을 달성하기 위해 먼저 이론적 고찰에서 지식경영프로세스와 웹 데이터 마이닝에 관련된 다양한 사전 연구들을 살펴보고 지식경영프로세스와 웹 데이터 마이닝을 결합하여 새로운 지식-기반 디자인 패러다임(본 연구에서는 웹 데이터 마이닝과 지식경영프로세스가 통합하여 구현된 진정한 의미의 eCRM을 지식-기반 디자인패러다임이라 칭한다)을 제안한다.
최근의 전자상거래는 유선인터넷 환경의 e-커머스와 모바일 커머스를 새로운 차원으로 확장한 u-커머스(ubiquitous)시대로 발전하고 있다. 따라서 온라인과 오프라인 매장의 상거래 데이터 연동과 유선과 무선인터넷 환경의 채널을 통합함으로써, 언제 어디서든지 고객의 모든 데이터를 수집하고 다양한 매체를 통해 고객관리를 할 수 있는 전자상거래 솔루션이 요구되어진다. 본 연구는 온 ${\cdot}$ 오프라인 매장에서 수집된 각종 데이터를 바탕으로 데이터마이닝을 통한 고객의 성향을 분석하여 고객의 요구사항을 미리 파악하고, 이를 마케팅에 적용하여 고객의 유지율을 상승시키고 해당 회사에 대한 충성심을 유도하여 이익을 증대 시킬 수 있는 시스템을 연구하였다.
최근 대부분 기업에서는 통합 데이터베이스 정보를 모델화하고 이를 전략적으로 활용하는 움직임이 가속화되고 있다. 이는 고객과의 커뮤니케이션 및 관계유지로 대변되는 CRM(Customer Relationship Management)이 기업들의 가장 중요한 이슈 중 하나로 부각되고 있기 때문이다. 본 연구에서는 이런 관점에서 CRM의 핵심 요소인 데이터 마이닝 기법을 이용하여 개발한 고객 스코어링 모델을 마케팅 층(Marketing Layer)에 연결해주는 스코어링 캠페인 시스템을 개발 하고자 한다. 개발한 시스템은 고객 스코어링 결과 및 캠페인 대상자 선정 작업을 쉽게 할 수 있도록 GUI환경에서 제공해 줌으로서 일반 사용자들이 쉽게 활용할 수 있도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.