최근 위치 기반 서비스의 활용이 높아졌으며 특히 Wifi를 사용한 위치 측위 기술의 발달로 실내위치 인식 서비스가 증가했다. 따라서 본 논문에서는 실내 공간 활용 증대를 위하여 실내 공간에서의 위치 측정 데이터를 수집해 분석하는 시스템을 제안하였다. 위치 측정을 위해 Wifi기반 Fingerprinting 기술을 통해 라디오 맵을 구축하였으며 이를 통해 실제 교내 도서관의 위치 데이터를 수집하였다. 데이터 분석은 도서관 이용 빈도가 높은 시간과 장소를 기준으로 이루어졌으며 시간과 장소간의 상관관계를 확인하였다.
최근 순환 신경 망(Recurrent Neural Networks)은 시간에 대한 의존성을 고려한 구조를 통해 순차 데이터(Sequential data)의 예측 문제 해결에서 각광받고 있다. 하지만 순차 데이터의 시간 스텝이 늘어남에 따라 발생하는 그라디언트 소실(Gradients vanishing)이 문제로 대두되었다. 이를 해결하기 위해 장단기 기억 모델(Long Short-Term Memory)이 제안되었지만, 많은 데이터를 저장하고 장기간 보존하는 데에 한계가 있다. 따라서 순환 신경망과 메모리 요소(Memory component)를 활용한 학습 모델인 메모리-증대 신경망(Memory-Augmented Neural Networks)에 대한 연구가 최근 활발히 진행되고 있다. 본 논문에서는 딥 러닝(Deep Learning) 분야의 화두로 떠오른 메모리-증대 신경망 주요 모델들의 구조와 특징을 열거하고, 이를 활용한 최신 기법들과 향후 연구 방향을 제시한다.
본 논문의 목적은 효과적인 식품정보 분류 체계 구축 및 관리를 위하여 식품정보의 메타데이터를 구축하고자 하는 것이다. 메타데이터는 데이터에 대한 데이터를 의미하며, 데이터의 분류체계, 구조, 내용요약을 함축적 의미로 표현하는 데이터이다. 이러한 메타데이터를 이용하여 식품정보를 체계적으로 분류하여 식품정보 조회, 분석, 활용을 위한 체계를 구축하였고, 식품정보에 대한 접근성을 향상시켰다. 따라서 본 논문을 통하여 식품정책, 식품산업, 식품기술 개발에 효과적인 정보를 제공하여 식품정보의 활용성 증대 및 효과적인 분류를 가능케 하였다.
한국데이타베이스학회 1998년도 국제 컨퍼런스: 국가경쟁력 향상을 위한 디지틀도서관 구축방안
/
pp.433-447
/
1998
데이터 웨어하우스는 일상업무 처리를 위한 운영 데이터(Operational Data)의 관리를 목적으로 구현되는 전통적인 데이터베이스 시스템에 대응하는 새로운 개념으로서, 업무분석 및 의사결정을 위한 '정보 데이터(Informational Data)'를 효과적으로 제공하는 것을 목적으로 하고 있다. 최근 가트너그룹의 조사에 의하면, 데이터베이스 보유기업중 대부분이 향후 5년 이내에 데이터 웨어하우스를 구축할 것으로 전망하고 있어 국내외적으로 급격한 수요증가가 예상되고 있다. 데이터 웨어하우스에 대한 수요 증대와 더불어, 국내 연구 기관에서도 독자적인 데이터 웨어하우스 관리 시스템 또는 구현 도구들을 개발하기 시작하고 있으나, 주로 UNIX 시스템을 대상으로 하고 있다.(중략)
데이터의 효과적인 활용이 경쟁력 확보에 주요한 요인이나, 데이터 폭증은 유용한 정보를 얻는데 필요한 처리 시간의 지연을 야기하고 있다. 개인 맞춤형 서비스, 방범 방재 서비스 등 모니터링 & 대응 서비스를 위해 분석할 데이터의 양이 급증하고 있으며, 텍스트, 영상, 오디오 등 비정형 데이터에 대한 실시간 분석 필요성이 증대하고 있다. 대량의 폭증하는 데이터에 대한 실시간 분석 처리 환경을 제공하기 위해 분산 병렬 컴퓨팅 기술과 데이터 스트림 연속 처리 기술이 활용되고 있다. 본고에서는 폭증하는 데이터 스트림 처리를 위하여 확장성 및 유연한 처리 환경을 제공하는 분산 스트림 컴퓨팅 기술에 대해 소개한다.
최근 웹 기반 혹은 모바일 기반의 지리정보시스템과, 높은 품질의 공간데이터에 대한 요구가 증대하고 있다. 이를 해결하기 위해서는 레벨별 상세화를 지원하는 데이터가 제공되어야 하며, 이러만 데이터를 효율적으로 처리하는 공간 인덱싱이 필요하다. 그러나, 레벨별 상세화 데이터를 지원하는 공간 인데싱 기법에 대한 기존 연구는 일부 일반화 연산자만을 지원하고 레벨별 데이터간 일관성을 고려하지 않는다는 문제점을 가진다. 본 연구에서는 이러한 문제를 극복하고자 일관성이 보장되는 맵 일반화 연산자를 모두 지원하는 공간 인덱싱 기법을 제안한다. 이를 통해 레벨별 상세화를 지원하는 데이터가 보다 효과적으로 다루어질 수 있다는 의의를 가진다.
텔레매틱스 서비스를 위한 많은 어플리케이션들이 개발 됨에 인해 테스트를 위한 도로 네트워크 기반의 이동객체 궤적데이터의 필요성이 증대되고 있다. 본 논문에서는 도로 네트워크 상의 이동객체들의 실 궤적 데이터와 유사한 합성 궤적 데이터를 구축하기 위한 방법론을 제안한다. 그리고 실제 구현 결과와 실 데이터와의 속도 패턴을 비교하여 실 데이터와의 유사성을 보인다.
교수자와 학습자 활동에 대한 정보를 피드백하여 사용자 스스로 동기부여와 참여를 증대시키기 위해 학습분석이 활용되고 있다. 이는 교수-학습 지원 시스템(LMS, LCSM 등)에서 교수자와 학습자 상호작용에서 발생한 데이터를 기반으로 한다. 이러한 데이터를 보다 유용하게 활용하기 위해서는 데이터 모델이 필요하다. 이에 본 연구에서는 사용자 중심의 교수-학습 활동 데이터를 표현하기 위한 데이터 모델을 제안한다. 이는 사용자와 교수-학습 활동을 결합하여 표현한 것이다.
인터넷의 보급과 활용이 증대되고 있고, 이동 통신에 대한 관심과 함께 분산 환경을 통한 컴퓨팅의 성능 향상이 중요시되고 있다. 분산 환경에서 데이터 사용의 성능을 향상시키기 위하여 데이터 중복 기법을 사용하는데, 서로 다른 복사본 사이의 데이터 일치성 유지가 필요하다. 본 논문에서는 데이터 일치성의 대표적인 모델을 Eager, Lazy, Periodic 세 가지로 구분하고. 각 모델의 특징을 알아보고 비용을 분석하여 사용자가 적절한 모델을 사용할 수 있도록 하였다. 또한 무선 컴퓨팅 환경에서의 데이터 일치성에 대한 테스트 베드를 블루투스를 이용하여 구축한 후 실제 성능을 측정하여 비용분석 모델의 유용성을 검증하였다.
본 논문에서는 딥러닝 기술 중의 하나인 CNN(Convolutional Neural Network) 기반의 얼굴 표정 인식 기법을 제안한다. 제안한 기법에서는 획득한 여섯 가지 주요 표정의 얼굴영상들을 학습 데이터로 이용할 때 분류 성능을 저해시키는 과적합(over-fitting) 문제를 해결하기 위해서 데이터 증대 기법(data augmentation)을 적용한다. 또한 기존의 CNN 구조에서 convolutional layer 및 node의 수를 변경하여 학습 파라미터 수를 대폭 감소시킬 수 있다. 실험 결과 제안하는 데이터 증대 기법 및 개선한 구조가 높은 얼굴 표정 분류 성능을 보여준다는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.