• 제목/요약/키워드: 데이터 어그멘테이션

검색결과 5건 처리시간 0.016초

감쇠 요소가 적용된 데이터 어그멘테이션을 이용한 대체 모델 학습과 적대적 데이터 생성 방법 (A Substitute Model Learning Method Using Data Augmentation with a Decay Factor and Adversarial Data Generation Using Substitute Model)

  • 민정기;문종섭
    • 정보보호학회논문지
    • /
    • 제29권6호
    • /
    • pp.1383-1392
    • /
    • 2019
  • 적대적 공격은 기계학습 분류 모델의 오분류를 유도하는 적대적 데이터를 생성하는 공격으로, 실생활에 적용된 분류 모델에 혼란을 야기하여 심각한 피해를 발생시킬 수 있다. 이러한 적대적 공격 중 블랙박스 방식의 공격은, 대상 모델과 유사한 대체 모델을 학습시켜 대체 모델을 이용해 적대적 데이터를 생성하는 공격 방식이다. 이 때 사용되는 야코비 행렬 기반의 데이터 어그멘테이션 기법은 합성되는 데이터의 왜곡이 심해진다는 단점이 있다. 본 논문은 기존의 데이터 어그멘테이션 방식에 존재하는 단점을 보완하기 위해 감쇠 요소를 추가한 데이터 어그멘테이션을 사용하여 대체 모델을 학습시키고, 이를 이용해 적대적 데이터를 생성하는 방안을 제안한다. 실험을 통해, 기존의 연구 결과보다 공격 성공률이 최대 8.5% 가량 높음을 입증하였다.

딥러닝 기반 픽셀 단위 콘크리트 벽체 균열 검출 방법 (Deep Learning-based Pixel-level Concrete Wall Crack Detection Method)

  • 강경수;류한국
    • 한국건축시공학회지
    • /
    • 제23권2호
    • /
    • pp.197-207
    • /
    • 2023
  • 콘크리트는 압축력에 잘 저항하고 내구성이 우수하여 널리 사용되는 재료이다. 하지만 구조물은 시공 단계에서 주변 환경, 사용되는 재료의 특성에 따라 완공된 후 표면의 균열, 구조물의 침하 등 다양한 하자가 발생하거나 시간이 지남에 따라 콘크리트 구조물 표면에 결함이 발생한다. 그대로 방치하면 구조물에 심각한 손상을 초래하기 때문에 안전 점검을 통해 검사해야 한다. 하지만 전문 검사원들이 직접 조사하기에 비용이 높고 육안으로 판단하는 외관 검사법을 사용한다. 고층 건물일수록 상세한 검사가 힘들다. 본 연구는 노후화로 인해 콘크리트 표면에 발생하는 결함 중 균열을 탐지하는 딥러닝 기반 시맨틱 세그먼테이션 모형과 해당 모형의 특징 추출과 일반화 성능을 높이기 위한 이미지 어그멘테이션 기법을 개발하였다. 이를 위해 공개 데이터셋과 자체 데이터셋을 결합하여 시맨틱 세그먼테이션용 데이터셋을 구축하고 대표적인 딥러닝 기반 시맨틱 세그먼테이션 모형들을 비교실험하였다. 콘크리트 내벽을 중점으로 학습한 모형의 균열 추출 성능은 81.4%이며, 개발한 이미지 어그멘테이션을 적용한 결과 3%의 성능향상을 확인하였다. 향후 고층 건물과 같이 접근성이 어려운 지점을 드론을 통해 콘크리트 외벽에서 균열을 검출할 수 있는 시스템을 개발함으로써 실질적으로 활용할 수 있기를 기대한다.

얼굴 모양 분류에 대한 Image Augmentation 적용 (Using Image Augmentation on Face Shape Classification)

  • 박정원;모현수
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.29-30
    • /
    • 2021
  • 본 논문에서는 이미지 분류에 쓰이는 최신 모델로 CNN과 ImageNet을 기반으로 한 EfficientNet을 활용해서 Square, Oval, Oblong, Round, Heart 총 다섯 가지의 얼굴 모양으로 분류하는 task에 두 가지 데이터로 실험해보고 추가적으로 Image Augmentation 기법을 활용해 성능향상을 보였다.

  • PDF

CNN 모델 평가를 위한 이미지 데이터 증강 도구 개발 (Development of an Image Data Augmentation Apparatus to Evaluate CNN Model)

  • 최영원;이영우;채흥석
    • 소프트웨어공학소사이어티 논문지
    • /
    • 제29권1호
    • /
    • pp.13-21
    • /
    • 2020
  • CNN 모델이 이미지 분류와 객체 탐지 등 여러 분야에 활용됨에 따라, 자율주행자동차와 같이 안전필수시스템에 사용되는 CNN 모델의 성능은 신뢰할 수 있어야 한다. 이에 CNN 모델이 다양한 환경에서도 성능을 유지하는지 평가하기 위해 배경을 변경한 이미지를 생성하는 이미지 데이터 증강 도구를 개발한다. 이미지 데이터 증강 도구에 객체가 존재하는 이미지를 입력하면, 해당 이미지로부터 객체 이미지를 추출한 후 수집한 배경 이미지 내에 객체 이미지를 합성하여 새로운 이미지를 생성한다. CNN 모델 성능 평가 방법으로 개발한 도구를 사용하여 기존 테스트 이미지로부터 새로운 테스트 이미지를 생성하고, 생성한 새로운 테스트 이미지로 CNN 모델을 평가한다. 사례 연구로 Pascal VOC2007 테스트 데이터로부터 새로운 테스트 이미지를 생성하고, 새로운 테스트 이미지로 YOLOv3 모델을 평가하였다. 그 결과 기존 테스트 이미지의 mAP 보다 새로운 테스트 이미지의 mAP가 약 0.11 더 낮아지는 것을 확인하였다.

Faster R-CNN을 활용한 GPR 영상에서의 지하배관 위치추적 성능분석 (Performance Analysis of Detecting buried pipelines in GPR images using Faster R-CNN)

  • 고형용;김남기
    • 융합정보논문지
    • /
    • 제9권5호
    • /
    • pp.21-26
    • /
    • 2019
  • 도심지에는 상 하수관로, 가스관, 수소관 등 필요에 따라 여러 가지 배관이 매설된다. 매설된 배관은 시간이 경과됨에 따라 균열 등으로 노후화되면서 폭발, 누수 등의 사고 발생 위험을 가지게 된다. 이러한 위험을 방지하기 위해 많은 노후 배관 수리, 교체되지만, 배관의 위치 또한 변경될 수 있다. 변경된 배관의 위치를 확인하지 못하면 배관을 건드려서 사고가 발생할 수 있다. 본 논문에서는 GPR을 사용하여 지하 단면 영상을 얻고, Faster R-CNN을 활용하여 지하 배관의 위치를 추정해보고, augmentation을 적용하여 부족한 데이터를 늘려서 실험을 진행하였다.