현재 우리나라 상수도 시스템의 경우 대부분 각 가정집에 설치된 계량기의 측정값을 검침원이 육안으로 확인, 수기 기입 방법으로 수도 검침이 이루어지고 있다. 이러한 방법은 사생활 침해 및 범죄로 이어질 가능성이 있다. 본 논문에서는 상수도의 검침데이터를 무선주파수 및 코드분할다중접속방식을 사용하여 송수신 가능한 네트워크 망을 구축, 수신된 데이터 값을 활용하여 각 상수도 수용가의 사용량을 자동으로 검침하여 청구 내역서까지 작성해 주는 상수도 자동검침시스템을 소개한다. 상수도 자동검침시스템은 검침을 디지털화하고 이를 무선송신 가능한 검침기와 검침기의 검침데이터 값을 송수신 할 수 있는 중계기 및 집중기, 그리고 CDMA 망을 통한 검침데이터를 수신할 수 있는 애플리케이션 서버 등을 구축하여 지역 내 원격 검침 네트워크 망을 구축하는 것을 포함하고 있다. 본 연구의 시스템은 화재, 가스, 전기 등의 검침데이터를 통합으로 수집하여 데이터를 관리하는 통합 시스템으로 확대가 용이하며 이러한 상수도 자동검침시스템은 누수 및 독거노인 등의 생활보호대상자의 안전을 확인하는 기초 정보로도 활용할 수 있다.
현재 우리나라의 상수도 시스템의 경우 대부분 각 가정집에 설치된 계량기의 측정값을 검침원이 육안으로 확인, 수기 기입 방법으로 수도 검침이 이루어지고 있다. 이러한 방법은 사생활 침해 및 범죄로 이어질 가능성이 있다. 본 논문에서는 상수도의 검침데이터를 무선주파수 및 코드분할다중접속방식을 사용하여 송수신 가능한 네트워크 망을 구축, 수신된 데이터 값을 활용하여 각 상수도 수용가의 사용량을 자동으로 검침하여 청구 내역서까지 작성해 주는 상수도 원격검침시스템을 소개한다. 상수도 자동검침시스템은 검침을 자동화하고 이를 무선송신 가능한 검침기와 검침기의 검침데이터 값을 송수신 할 수 있는 중계기 및 집중기, 그리고 CDMA 망을 통한 검침데이터를 수신할 수 있는 애플리케이션 서버 등을 구축하여 지역 내 원격검침 네트워크 망을 구축하는 것을 포함하고 있다. 본 연구의 시스템은 화재, 가스, 전기 등의 검침데이터를 통합으로 수집하여 데이터를 관리하는 통합 시스템으로의 확대가 용이하며 이러한 상수도 원격검침시스템은 누수 및 독거노인 등의 생활보호대상자의 안전을 확인하는 기초 정보로도 활용할 수 있다.
본 논문에서는 변압기의 이상 신호 데이터를 원거리에서 축적하기 위한 이상 신호 진단 시스템을 제안한다. 이 시스템은 원격으로 변압기의 이상 신호를 수집하여 변압기의 이상을 알아낼 수 있다. 이 시스템은 상용된 통신 모듈의 느린 통신 속도를 고려하여 이상 신호를 RMS-DC 값으로 변환하는 작업을 추가하였다.
산업분야에서 이용되는 이력 데이터는 압력, 부피, 온도, 볼트, 전류, 전압 등 각종 제어기나 센서에서 발생하는 입력 정보를 일정 시간 간격으로 수집되는 데이터로, 데이터의 값이 일정하거나 값의 폭이 좁고, 많게는 수만 개의 포인트가 실시간으로 수집, 저장되어지는 대용량의 데이터라는 특징이 있다. 이러한 특성을 지닌 이력 데이터는 이력의 모든 데이터를 저장하지 않고, 전체를 대표하는 데이터의 일부만을 저장함으로써 이력 데이터의 효율적인 관리와 공간효율을 극대화시킬 수 있다. 이러한 이력 데이터를 효과적으로 관리하고, 보관하기 위해 이력 데이터 압축 알고리즘에 대한 개발과 연구가 진행 중이다. 그러나 이미 알려져 있는 이력 데이터 압축 알고리즘과 개발하고 있는 알고리즘의 성능에 대한 평가를 할 수 있는 시뮬레이터는 개인이나 소규모 집단만을 위해 만들어지거나, 공개되지 않고 있어 사용하기에 제한적이다. 이에 이력 데이터 압축 성능평가를 위한 시뮬레이터인 HDCS(Historical Data Compression Simulator)를 설계하고 구현하고자 한다.
본 논문에서는 확률적 모델예측제어(model predictive control) 기법을 이용하여 예제 동작 데이터가 주어지면 물리 기반 시뮬레이션 환경에서 그 동작을 모방할 수 있는 캐릭터 동작 제어기를 빠르게 학습할 수 있는 간편한 지도 학습(supervised learning) 프레임워크를 제안한다. 제안된 프레임워크는 크게 학습 데이터 생성과 오프라인 학습의 두 컴포넌트로 구성된다. 첫번째 컴포넌트는 예제 동작 데이터가 주어지면 확률적 모델예측제어를 통해 그 동작 데이터를 추적하기 위한 최적 제어기를 캐릭터의 현재 상태로부터 시작하여 가까운 미래 상태까지의 시간 윈도우에 대해 주기적으로 업데이트하면서 그 최적 제어기를 통해 캐릭터의 동작을 확률적으로 제어한다. 이러한 주기적인 최적 제어기의 업데이트와 확률적 제어는 주어진 예제 동작 데이터를 모방하는 동안 캐릭터가 가질 수 있는 다양한 상태들을 효과적으로 탐색하게 하여 지도 학습에 유용한 학습 데이터를 수집할 수 있게 해준다. 이렇게 학습 데이터가 수집되면, 오프라인 학습 컴포넌트에서는 그 수집된 데이터를 정규화 시켜서 데이터에 내제된 크기와 단위의 차이를 조정하고 지도 학습을 통해 제어기를 위한 간단한 구조의 인공 신경망을 학습시킨다. 걷기 동작과 달리기 동작에 대한 실험은 본 논문에서 제안한 학습 프레임워크가 물리 기반 캐릭터 동작 제어기를 빠르고 효과적으로 생성할 수 있음을 보여준다.
시공간 접근 방법들을 위한 효율적인 성능평가 환경은 최소한 다음과 같은 모듈들을 포함해야 한다. 종합적인 데이터집합의 생성, 데이터집합의 저장, 접근 구조들의 수집과 실행, 실험적인 결과의 시각화 등이다. 데이터집합 저장 모듈에 초점을 맞추어서 다양한 실제 세계 시나리오를 실험하기 위한 종합적인 데이터의 생성이 요구된다. 과거의 여러 알고리즘들은 작업공간에서 미리 분배된 정적인 공간데이터를 생성하기 위하여 구현되어져왔다. 하지만 시간에 따라 변화하는 공간객체인 시공간 데이터를 생성하기에는 어렵다. 이 논문에서 시공간 데이터 타입의 데이터 생성기에서 고려하여야 할 매개변수들에 대하여 논의한다. "Generate_Spatio_Temporal_Data"라는 알고리즘은 움직이는 점 또는 사각형데이터를 생성하고 거래시간과 유효시간을 구별하지 않았으며 시간 점만을 표현하였다. 이 논문에서는 정확한 시간적 개념을 표현하기 위하여 거래시간과 유효시간간격 모두를 지원하는 데이터 생성기에 관하여 논의하기 위한 알고리즘을 제시하고 실제적인 데이터집합 생성을 위한 매개변수들을 나타낸다.
본 논문에서는 한국어 고유명사의 특징에 대해 살펴보고, 이를 기반으로 문서로부터 고유명사를 추출하기 위한 기본 모델을 제안한다. 고유명사는 문서의 내용을 대표하는데 주도적인 역할을 하기 때문에, 이를 효과적으로 추출해내는 것은 문서의 의미를 보다 정확하게 표현할 수 있는 방법이 될 수 있다. 문서에서 고유명사를 효과적으로 추출할 수 있도록 하기 위해, 본 연구에서는 이름집합, 접사집합, 단서집합을 구성할 수 있는 데이터 수집기 모델과 데이터 집합을 기본으로 이용하여 고유명사를 추출하는 고유명사 추출기 모델을 제안하였다. 그리고 실제로 이 모델을 적용하여, 회사명과 관련된 데이터를 수집하고, 이를 이용해 문서로부터 회사명을 추출할 수 있도록 하는 시스템을 구현하였다. 구현된 회사명 추출 시스템을 이용해 고유명사 추출 실험을 수행한 결과, 외래어로 이루어진 회사명으로 인한 문제를 제외할 경우 만족할 만한 정확율과 재현율을 얻을 수 있었다.
본 연구에서는 감성 평가 시스템에 가장 적합한 파라미터를 찾기 위하여 3가지 뇌파 파라미터를 이용하여 감정 분류 실험을 하였다. 뇌파 파라미터는 선형예측기계수(linear predictor coefficients)와 FFT 스펙트럼 및 AR 스펙트럼의 밴드별 상호상관계수(cross-correlation coefficients)를 이용하였으며, 감정은 relaxation, joy, sadness, irritation으로 설정하였다. 뇌파 데이터는 대학의 연극동아리 학생 4명을 대상으로 수집하였으며, 전극 위치는 Fp1, Fp2, F3, F4, T3, T4, P3, P4, O1, O2를 사용하였다. 수집된 뇌파 데이터는 전처리를 거친 후 특징 파라미터를 추출하고 패턴 분류기로 사용된 신경회로망(neural network)에 입력하여 감정 분류를 하였다. 감정 분류실험 결과 선형예측기계수를 이용하는 것이 다른 2가지 보다 좋은 성능을 나타내었다.
본 연구는 유출위협 탐지 연구에 활용되는 유출위협 데이터 셋의 한계점을 분석하고 현재의 문제를 극복하기 위해 보안솔루션을 활용하여 공개된 유출위협 데이터와 비교 분석한다. 이를 통해 유출위협 탐지에 적합한 데이터 포맷을 설계하고 블록체인 기술을 사용하여 서로 다른 기관 및 기업 간 유출위협 정보를 안전하게 공유할 수 있는 시스템을 구현한다. 현재 연구원들에게 공개된 유출위협 데이터 셋에서 실제 사건을 기반으로 수집한 데이터 셋은 없다. 공개된 데이터 셋은 연구를 위해 임의로 만들어진 가상의 합성데이터로 학습모델로 사용 시 실제 환경에서의 많은 한계점이 존재한다. 본 연구에서는 이러한 한계점들을 개선하기 위해서 프라이빗 블록체인 설계하여 소속이 다른 기관끼리 안전한 정보공유를 위해 참여자 간 합의와 검증을 통해 신뢰성을 높이고 정보의 무결성과 정합성을 유지하는 방안을 도출하였다. 제시한 방법은 유출위협 수집기를 통해 데이터를 수집하고 블록체인 기반 공유 시스템을 통해 합성데이터가 아닌 실제 위협을 가했던 양질의 데이터 셋을 수집하여 현재의 유출위협 데이터 셋 문제를 해결하고 향후 내부자 유출위협 탐지 모델에 기여할 것으로 사료된다.
4차산업 혁명 이후, 빅 데이터는 사이버 공간을 통한 사회적 파장이 큰 사건들에 대한 대중의 정보 수집 패턴을 이해하는 데에 있어서 전에 경험하지 못한 급속한 발전을 이루어 왔다. 사이버 공간에서 이루어지는 대중들의 정보수집 활동을 모니터링하므로서 대중들사이에서 떠오르는 주제나 사건을 파악하기에 좋은 인덱스로 여러 사회 경제분야에 활용되어 왔다. 하지만, 수자원 관리 및 방재관점에서는 이런 빅데이터을 활용한 연구 사례는 찾아 보기 힘들다. 하지만, 이런 빅데이터를 가뭄기에 대중들이 어떻게 반응하였는지를 연구하는 데에 활용될 수 있다. 이 발표에서 발표자는 미국 2011-17년 캘리포니아 가뭄의 선례연구들을 통해 주 또는 국가 범위에서 구글 이용자들의 정보수집 활동을 기록한 구글트렌즈 데이터를 가뭄기동안 대중의 정보 수집량을 바탕으로 가뭄 위험 인지도를 정의하고 대중의 행동 양식을 이해하는 데에 어떻게 활용할 수 있는 지를 소개한다. 첫번째로, 최근 캘리포니아에서 발생한 다년간의 가뭄동안 그 주안의 주민들의 행동양식 분석 결과를 소개한다. 두번째로는 미국 49개의 주에서 지난 2004년부터 2018년동안의 지역적 가뭄에 대한 대중의 가뭄 위험인지도를 시공간적인 양식을 주성분분석기술을 통해 분석한 결과을 소개한다. 끝으로, 발표자는 지난 미국 선례 연구들에서 발표자가 제안한 기술이 어떻게 대한민국에서 홍수나 가뭄 방재에 적용할 수 있으며 앞으로 대한민국을 수재해에 준비된 나라로 만드는 데에 있어서 빅데이터의 역할을 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.