과거에 비해 비약적으로 생산되는 공간 데이터에 대한 처리를 위한 공간 연산은 빠른 처리 응답성을 요구하는 경우가 많다. 그래서 최근 하둡(Hadoop)과 같은 빅데이터 처리 시스템을 이용하여 처리하고자 하는 시도가 많다. 한편, 공간 조인은 데이터 분할(Partitioning)과 공간 색인의 이용 여부, 여과 단계와 정제 단계를 거치는 등 그 복잡도가 강한 공간 연산이다. 그래서 빅데이터 처리 시스템을 이용한 공간 조인의 처리 방식은 매우 다양하다. 그러나 지금까지 이러한 공간 조인의 처리 방식에 다른 리소스 활용에 대한 비교는 거의 없다. 이 논문에서는 다양한 공간 연산의 수행 방법에 따른 빅데이터 시스템 클러스터에서 데이터 전송 방식을 고찰하고 데이터 전송에 따른 네트워크 리소스의 효율적인 사용 방안을 제안하고자 한다. 구체적으로 단일할당과 다중할당 색인 기법의 비교, 파티셔닝 방법의 비교, 맵리듀스 시스템의 태스크 할당 방법에 따른 비교를 통해 다양한 연산 유형에 따른 공간 조인의 처리 방안 선정에 고려 요소를 제시하고자 한다.
한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
/
pp.482-485
/
2006
다채널 시각비교 수신기(R100-40T, Euro-80)를 이용한 GPS C/A 코드 시각비교 데이터와 Ashtech Z12T 수신기를 이용한 P3 코드 시각비교 데이터를 통합 모니터링함으로서, 간편하게 시각비교 결과를 확인 할 수 있게 GUI(Graphic User Interface) 환경으로 구현하였다. 수신기들은 현재 KRISS(Korea Research Institute of Standards and Science)에서 사용 중인 위성이용 시각비교 수신기들이다. 본 시각비교 통합 모니터링 프로세스를 통해서 GPS C/A code 시각비교 데이터와 P3 code 시각비교 데이터 각각을 비교 분석함으로써 시각비교 결과의 신뢰성을 검증하는데 사용한다.
본 논문에서는 주성분 회귀법과 부분최소자승 회귀법을 비교하여 보여준다. 이 비교의 목적은 선형형태를 보유한 근적외선 분광 데이터의 분석에 사용할 수 있는 적합한 예측 방법을 찾기 위해서이다. 두 가지 데이터 마이닝 방법론인 주성분 회귀법과 부분최소자승 회귀법이 비교되어 질 것이다. 본 논문에서는 부분최소자승 회귀법은 주성분 회귀법과 비교했을 때 약간 나은 예측능력을 가진 결과를 보여준다. 주성분 회귀법에서 50개의 주성분이 모델을 생성하기 위해서 사용지만 부분최소자승 회귀법에서는 12개의 잠재요소가 사용되었다. 평균제곱오차가 예측능력을 측정하는 도구로 사용되었다. 본 논문의 근적외선 분광데이터 분석에 따르면 부분최소자승회귀법이 선형경향을 가진 데이터의 예측에 가장 적합한 모델로 판명되었다.
본 논문에서는 지표면 산란에 대한 모델을 개발하였고 이를 JPL AirSAR 측정데이터와 비교하였다. 식물이 없는 토양에서의 레이더 산란에 대해 새로 개발된 polarimetric empirical model(PEM)을 바탕으로, radiative transfer 이론을 이용하여 숲, 논, 밭 등 식물이 있는 토양에서의 레이더 산란 모델을 개발하였다. 지표면에서의 산란에 대해 개발된 이 모델을 AirSAR PACRIM-2 실험에서 얻은 측정 데이터와 비교하였다. 논, 채소밭, 풀 없는 토양, 소나무 숲 등에 대해 그 지역에서 얻은 지표면 변수를 이용한 산란모델 계산 결과를 측정 데이터와의 비교함으로써 이 산란모델의 사용가능 범위에 대한 논의가 이루어졌다.
최근 데이터 표현 형식으로 XML 데이터가 많이 도입되면서 두 개의 XML 트리를 비교하여 차이를 구하는 것이 데이터 웨어하우징이나 XML 네이티브 데이터베이스 등에서 중요한 요소가 되었다. 기존의 XML 트리 비교 방법은 일반적으로 가격 모델 기반 노드 매핑을 도입하고 있다. 이러한 최소 가격 기반 노드 매핑을 통해 트리의 차이를 구하는 방식은 원래 데이터의 의미와 조건을 유지하지 못하는 경우가 생기는데, 본 논문에서는 이러한 문제를 해결하기 위하여 트리의 변경 과정에서 유지되는 불변 조건의 개념을 소개하고 이를 이용하여 트리 비교를 수행하기 위한 모델을 제시한다.
현재의 단백질 구조비교 시스템들 사이의 호환성이나 상호작용성의 문제를 해결하고 단백질 구조를 비교하는 시스템을 신속히 개발하기 위해서 단백질 3차구조를 표현하기 위한 데이터를 추출하여 XML과 같은 표준 형식으로 기술된 데이터를 제공하는 것이 바람직하다. 이에 따라 단백질의 2차구조 구성요소와 그들 사이의 관계를 이용하여 단백질 구조를 기술하는 PSA가 제안되었으며, PSA를 기반으로 하여 단백질 데이터의 XML 표현기법인 PSAML이 제안되었다. 본 논문에서는 PSAML 데이터의 생성을 위하여 PDB에서 제공되는 데이터를 PSAML 형식으로 변환시키는 도구를 설계하고 구현하였다. 변환도구는 XML DOM과 Java를 이용하여 구현되었으며, 생성된 데이터는 단백질 구조 및 유사성을 비교하기 위한 단백질 구조비교 시스템에서 사용될 수 있다.
본 연구는 효율적인 메타데이터간의 상호운용 방안마련을 위하여 주요 원칙들을 선정하고 이 원칙들을 기준으로 디지털자원 관리를 위한 메타데이터간의 상호운용성에 대한 실질적인 비교테이블을 제안하였다. NISO의 백서(White Paper)에서 제안한 상호연동(crosswalking)의 주요 항목들을 바탕으로 원칙들을 선정하고 이 원칙들을 기준으로 INDES 메타데이터 구조(framework)를 바탕으로 개발된 ONIX와 기존의 MARC과 Dublin Core와 비교하였다. 이들 메타데이터 요소들의 실질적인 비교를 통하여 상이한 메타데이터간의 상호운용성을 위한 어의, 구문 및 구조에 대한 공통적인 규칙을 지원하는 구문을 개발하고, 실제로 메타데이터간의 변환 시스템을 구현하는 도서관 관련 시스템 개발자들에게 있어서 필수적인 기반 연구가 되고자 하였다.
빅데이터 시대가 도래되면서 과거와 비교할 수 없을 만큼의 방대하고 다양한 데이터가 생산됨에 따라 기존의 데이터 분석 도구의 사용은 한계에 부딪히게 되었다. 따라서 기존의 분석 도구보다 효율적이고 정확성이 높은 데이터 분석 도구를 필요로 하게 되었고, 빅데이터를 처리할 수 있는 분석 도구들에 대한 많은 연구들이 진행되어 왔다. R과 Apache Spark는 대표적인 데이터 분석 도구로 기계 학습을 위한 기능을 제공하고 있다. 본 논문에서는 기계 학습을 활용하여 두 개의 널리 알려진 데이터 분석 도구인 R과 Apache Spark의 데이터 분석 성능을 비교함으로써 보다 효율적이고 정확성이 높은 도구를 모색하고자 한다.
Edge Computing에서 발생하는 데이터 분석에 대한 알고리즘의 성능 평가나 검증은 필수적이다. 이러한 평가 및 검증을 위해서는 비교 가능한 데이터가 필요하다. 본 논문에서는 Edge Computing에서 발생하는 데이터에 대한 분석 결과 및 Computing Resource에 대한 성능평가를 위해 Cloud 기반의 빅 데이터 분석시스템을 구축한다. Edge Computing 비교분석 빅 데이터 시스템은 실제 IoT 노드에서 Edge Computing을 수행할 때와 유사한 환경을 Cloud 상에 구축하고 연구되는 Edge Computing 알고리즘을 Data Analysis Cluster Container에 탑재해 분석을 시행한다. 그리고 분석 결과와 Computing Resource 사용률 데이터를 기존 IoT 노드 Edge Computing 데이터와 비교하여 개선점을 도출하는 것이 본 논문의 목표이다.
시계열 데이터의 특징을 추출하여 분석하는 과정에서 시게열 데이터가 가지는 고차원성은 차원의 저주(Course of Dimensionality)로 인해 데이터내의 유효한 정보를 찾는데 어려움을 만든다. 이러한 문제를 해결하기 위해 차원 축소 기법(dimensionality reduction)이 널리 사용되고 있지만, 축소 과정에서 발생하는 정보의 희석으로 인하여 시계열 데이터에 대한 군집화(clustering)등을 수행하는데 있어서 성능의 변화를 가져온다. 본 논문은 이러한 현상을 관찰하기 위해 이산 웨이블릿 변환(Discrete Wavelet Transform:DWT)과 오토 인코더(AutoEncoder)를 차원 축소 기법으로 활용하여 시계열 데이터의 차원을 압축 한 뒤, 압축된 데이터를 K-평균(K-means) 알고리즘에 적용하여 군집화의 효율성을 비교하였다. 성능 비교 결과, DWT는 압축된 차원수 그리고 오토인코더는 시계열 데이터에 대한 충분한 학습이 각각 보장된다면 좋은 군집화 성능을 보이는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.