• Title/Summary/Keyword: 데이터 분할 평가

Search Result 502, Processing Time 0.024 seconds

Outdoor Localization for Returning of Quad-rotor using Cell Divide Algorithm and Extended Kalman Filter (셀 분할 알고리즘과 확장 칼만 필터를 이용한 쿼드로터 복귀 실외 위치 추정)

  • Kim, Ki-Jung;Kim, Yoon-Ki;Choi, Seung-Hwan;Lee, Jang-Myung
    • Journal of IKEEE
    • /
    • v.17 no.4
    • /
    • pp.440-445
    • /
    • 2013
  • This paper proposes a local estimation system which combines Cell Divide Algorithm with low-cost GPS/INS fused by Extended Kalman Filter(EKF) for localization of Quad-rotor when it returns to the departure point. In the research, the low-cost GPS and INS are fused by EKF to reduce the local error of low-cost GPS and the accumulative error of INS due to continuous integration of sensor error values. When the Quad-rotor returns to the departure point in the fastest path, a moving path can be known because it moves straight, where Cell Divide Algorithm is used to divide moving route into the cells. Then it determines the closest position of data of GPS/INS system fused by EKF to obtain the improved local data. The proposed system was verified through comparing experimental localization results obtained by using GPS, GPS/INS and GPS/INS with Cell Divide Algorithm respectively.

Road Surface Damage Detection Based on Semi-supervised Learning Using Pseudo Labels (수도 레이블을 활용한 준지도 학습 기반의 도로노면 파손 탐지)

  • Chun, Chanjun;Ryu, Seung-Ki
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.4
    • /
    • pp.71-79
    • /
    • 2019
  • By using convolutional neural networks (CNNs) based on semantic segmentation, road surface damage detection has being studied. In order to generate the CNN model, it is essential to collect the input and the corresponding labeled images. Unfortunately, such collecting pairs of the dataset requires a great deal of time and costs. In this paper, we proposed a road surface damage detection technique based on semi-supervised learning using pseudo labels to mitigate such problem. The model is updated by properly mixing labeled and unlabeled datasets, and compares the performance against existing model using only labeled dataset. As a subjective result, it was confirmed that the recall was slightly degraded, but the precision was considerably improved. In addition, the $F_1-score$ was also evaluated as a high value.

Binary Image Search using Hierarchical Bintree (계층적 이분트리를 활용한 이진 이미지 탐색 기법)

  • Kim, Sung Wan
    • Journal of Creative Information Culture
    • /
    • v.6 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • In order to represent and process spatial data, hierarchical data structures such as a quadtree or a bintree are used. Various approaches for linearly representing the bintree have been proposed. S-Tree has the advantage of compressing the storage space by expressing binary region image data as a linear binary bit stream, but the higher the resolution of the image, the longer the length of the binary bit stream, the longer the storage space and the lower the search performance. In this paper, we construct a hierarchical structure of multiple separated bintrees with a full binary tree structure and express each bintree as two linear binary bit streams to reduce the range required for image search. It improves the overall search performance by performing a simple number conversion instead of searching directly the binary bit string path. Through the performance evaluation by the worst-case space-time complexity analysis, it was analyzed that the proposed method has better search performance and space efficiency than the previous one.

A Hierarchical Representatives Clustering Technique for Data Mining (데이터 마이닝을 위한 계층적 대표값 군집화 기법)

  • 안병주;김은주;이일병
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.69-71
    • /
    • 2000
  • 군집화는 데이터 집합을 유사한 데이터 개체들의 군집들로 분할하여 데이터 속에 존재하는 의미 있는 정보를 얻는 과정이다. 대부분의 군집화 기법들은 비교적 적은 양의 데이터를 대상으로 한 것이고 다차원 대용량의 데이터 처리에 관한 문제는 다루지 않고 있어서 데이터 마이닝을 위한 군집화 기법으로는 부적절하다. 따라서 본 논문을 통해 대용량의 데이터에 적용할 수 있는 새로운 군집화 알고리즘인 계층적 대표값 군집화(HRC) 기법을 제안한다. HRC는 자기조직화지도와 계층적 군집화 기법을 접목한 하이브리드 방법으로 두 단계에 거쳐 군집화를 수행한다. 첫 번째 단계에서 자기조직화지도를 통해 데이터를 요약하고, 두 번째 단계에서 요약된 대표값 정보만을 가지고 계층적인 군집화를 수행한다. 또한, 두 번째 단계의 계층적 군집화 적용시 양질의 군집을 발견하기 위해 군집간의 유사도를 측정하는 새로운 척도를 고안하였다. 그리고 실험을 통해 HRC와 기존 군집화 알고리즘이 발견한 군집의 질을 비교하여 성능을 평가했다.

  • PDF

Design and Implementation of HDFS Data Encryption Scheme Using ARIA Algorithms on Hadoop (하둡 상에서 ARIA 알고리즘을 이용한 HDFS 데이터 암호화 기법의 설계 및 구현)

  • Song, Youngho;Shin, YoungSung;Chang, Jae-Woo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.2
    • /
    • pp.33-40
    • /
    • 2016
  • Due to the growth of social network systems (SNS), big data are realized and Hadoop was developed as a distributed platform for analyzing big data. Enterprises analyze data containing users' sensitive information by using Hadoop and utilize them for marketing. Therefore, researches on data encryption have been done to protect the leakage of sensitive data stored in Hadoop. However, the existing researches support only the AES encryption algorithm, the international standard of data encryption. Meanwhile, Korean government choose ARIA algorithm as a standard data encryption one. In this paper, we propose a HDFS data encryption scheme using ARIA algorithms on Hadoop. First, the proposed scheme provide a HDFS block splitting component which performs ARIA encryption and decryption under the distributed computing environment of Hadoop. Second, the proposed scheme also provide a variable-length data processing component which performs encryption and decryption by adding dummy data, in case when the last block of data does not contains 128 bit data. Finally, we show from performance analysis that our proposed scheme can be effectively used for both text string processing applications and science data analysis applications.

Development of educational software for coarse classifying and model evaluation in credit scoring (개인신용평점에서 항목그룹화와 모형평가를 위한 교육용 소프트웨어의 개발)

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1225-1235
    • /
    • 2010
  • The coarse classifying procedure in credit scoring splits the values of a continuous characteristic into bands and the values of a discrete characteristic into groups of values. Also, the scorecard degrades over time and thus we should adjust the cut-off score being used. However, the coarse classifying and the adjustment of cut-off score in credit scoring are very complicate and troublesome procedure. Thus, in this paper, we develop a software for the coarse classifying and the model evaluation by using Visual Basic Language. By using the developed software, we can find the best split in the coarse classifying and the optimal cut-off score in the model evaluation.

A Study on The Performance Analysis of Partition Multistage Interconnection Network (분할된 다단상호접속망의 성능 분석에 관한 연구)

  • 김영선;최진규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.6
    • /
    • pp.675-685
    • /
    • 1989
  • The interconnection network is an integral part of parallel processing system. The multistage interconnection networks(MINs) have been the objects of intense research in recent years. In this paper, simulation techniques for circuit switchign MIN are extended to allow the performance evaluation of partitioned ADM/IADM network. Based on simulation data, the relationship between the netwrok performance, the partitioning scheme employed, and the conflict resolution strategies used within the network is enumerated. It is shown that IADM network coupled with the use of the hold strategy produces the best network operation in terms of RST (Request Service Time).

  • PDF

The Study on Data Encryption Schemes Using LDU Decomposition (LDU 분해를 이용한 데이터 암호화 기법에 관한 연구)

  • 최성진;윤희용;최중섭;이강신
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.757-759
    • /
    • 2003
  • 저장장치의 발전과 인터넷 사용량의 증가, 전자 상거래의 활성화에 의해 많은 사람들이 디지털정보를 편리하게 이용할 수 있게 되었다. 이에 따라 저장장치의 보안성과 생존성은 가장 중요한 사항으로 고려되고 있으며, 이러한 보안성과 생존성을 높이기 위하여 새로운 분산저장기법의 연구개발이 절실히 필요한 실정이다. 따라서, 본 논문에서는 분산저장시스템의 보안성과 생존성을 높이기 위해 필수적으로 필요한 분산/암호화 기법을 LDU 분해를 이용하여 제안하고, 제안된 기법의 가용성을 평가한다 제안된 기법은 데이터의 분할과 암호화를 동시에 허락하여 보안성을 높임과 동시에 기존의 기법과 비교하여 10%정도의 가용성 향상을 보인다.

  • PDF

Modeling of plasma chamber leaks using wavelet neural network (웨이브릿 신경망을 이용한 플라즈마 챔버 누출 모델링)

  • Gwon, Sang-Hui;Kim, Byeong-Hwan;Park, Byeong-Chan;Woo, Bong-Ju
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.225-226
    • /
    • 2009
  • 본 연구에서는 신경망과 웨이브릿을 결합하여 플라즈마 챔버의 누출을 감시하기 위한 시계열 모델을 개발하였다. 플라즈마 데이터는 광반사분광기 (Optical Emission Spectroscopy-OES)를 이용하여 측정하였으며, 이를 시계열 신경망을 이용하여 모델링하였다. 이산치 웨이브릿 (Discrete Wavelet Transformation)은 OES 센서정보의 전 처리를 위해 이용되었다. 개발된 웨이브릿 신경망 모델은 47개의 데이터 sets을 이용하여 평가하였으며, 누출상태를 효과적으로 탐지할 수 있었다.

  • PDF

Design and Performance Analysis of MapReduce-based kNN join Query Processing Algorithm (맵리듀스 기반 kNN join 질의처리 알고리즘의 설계 및 성능평가)

  • Kim, TaeHoon;Lee, HyunJo;Chang, JaeWoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.733-736
    • /
    • 2014
  • 최근 대용량 데이터에 대한 효율적인 데이터 분석 기법이 활발히 연구되고 있다. 대표적인 기법으로는 맵리듀스 환경에서 보로노이 다이어그램을 이용한 k 최근접점 조인(VkNN-join) 알고리즘이 존재한다. VkNN-join 알고리즘은 부분집합 Ri에 연관된 부분집합 Sj만을 후보탐색 영역으로 선정하여 질의를 처리하기 때문에 질의처리 시간을 감소시킨다. 그러나 VkNN-join은 색인 구축 비용이 높으며, kNN 연산 오버헤드가 큰 문제점이 존재한다. 이를 해결하기 위해, 본 논문에서는 대용량 데이터 분석을 위한 맵리듀스 기반 kNN join 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 시드 기반의 동적 분할을 통해 색인구조 구축비용을 감소시킨다. 또한 시드 간 평균 거리를 기반으로 후보 영역을 선정함으로써, 연산 오버헤드를 감소시킨다. 아울러, 성능 평가를 통해 제안하는 기법이 질의처리 시간 측면에서 기존 기법에 비해 우수함을 나타낸다.