• 제목/요약/키워드: 데이터 분류

검색결과 5,743건 처리시간 0.032초

정교한 데이터 분류를 위한 방법론의 고찰 (A Review of the Methodology for Sophisticated Data Classification)

  • 김승재;김성환
    • 통합자연과학논문집
    • /
    • 제14권1호
    • /
    • pp.27-34
    • /
    • 2021
  • 전 세계적으로 인공지능(AI)을 구현하려는 움직임이 많아지고 있다. AI구현에서는 많은 양의 데이터, 목적에 맞는 데이터의 분류 등 데이터의 중요성을 뺄 수 없다. 이러한 데이터를 생성하고 가공하는 기술에는 사물인터넷(IOT)과 빅데이터(Big-data) 분석이 있으며 4차 산업을 이끌어 가는 원동력이라 할 수 있다. 또한 이러한 기술은 국가와 개인 차원에서 많이 활용되고 있으며, 특히나 특정분야에 집결되는 데이터를 기준으로 빅데이터 분석에 활용함으로써 새로운 모델을 발견하고, 그 모델로 새로운 값을 추론하고 예측함으로써 미래비전을 제시하려는 시도가 많아지고 있는 추세이다. 데이터 분석을 통한 결론은 데이터가 가지고 있는 정보의 정확성에 따라 많은 변화를 가져올 수 있으며, 그 변화에 따라 잘못된 결과를 발생시킬 수도 있다. 이렇듯 데이터의 분석은 데이터가 가지는 정보 또는 분석 목적에 맞는 데이터 분류가 매우 중요하다는 것을 알 수 있다. 또한 빅데이터 분석결과 통계량의 신뢰성과 정교함을 얻기 위해서는 각 변수의 의미와 변수들 간의 상관관계, 다중공선성 등을 고려하여 분석해야 한다. 즉, 빅데이터 분석에 앞서 분석목적에 맞도록 데이터의 분류가 잘 이루어지도록 해야 한다. 이에 본 고찰에서는 AI기술을 구현하는 머신러닝(machine learning, ML) 기법에 속하는 분류분석(classification analysis, CA) 중 의사결정트리(decision tree, DT)기법, 랜덤포레스트(random forest, RF)기법, 선형분류분석(linear discriminant analysis, LDA), 이차선형분류분석(quadratic discriminant analysis, QDA)을 이용하여 데이터를 분류한 후 데이터의 분류정도를 평가함으로써 데이터의 분류 분석률 향상을 위한 방안을 모색하려 한다.

노이즈 데이터 정제를 통한 분류모델 성능 향상 (Enhancing Classification Model Performance through Noise Data Refinement)

  • 정운국;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 춘계학술발표대회
    • /
    • pp.559-562
    • /
    • 2024
  • 자연어 기반의 분류모델을 개발할 때 높은 성능을 획득하기 위해서는 데이터의 품질이 중요한 요소이다. 특히 무역상품 국제 분류체계 HS-CODE에서 상품명을 기반으로 HS코드를 분류할 때, 라벨링 된 데이터의 품질에 의해서 분류모델의 성능이 좌우된다. 하지만 현실적으로 확보 가능한 데이터셋에는 데이터 라벨링 오류나 데이터로 활용하기에 특징점이 부족한 데이터들이 다수 존재하기도 한다. 본 연구에서는 분류모델 학습 데이터의 정제 방법론으로, 딥러닝 기반 노이즈 검출 알고리즘을 제안한다. 분류 대상의 특징점이 분류 경계값 주변에 존재한다면 분류하기 모호한 노이즈 데이터일 가능성이 높다고 가정하고, 해당 노이즈 데이터를 검출하는 방법으로 딥러닝 기술을 활용한다. 해당 경계값 노이즈 검출 알고리즘으로 데이터를 정제한 뒤 학습모델의 성능비교 결과, 기존 대비 우수한 분류 정확도를 기록하였다.

레이블이 없는 데이터로부터의 학습에 의한 자동 문서 분류 (Automatic Text Classification by Learning from Unlabeled Data)

  • 박성배;김유환;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.265-267
    • /
    • 2001
  • 본 논문에서는 레이블이 없는 데이터를 이용하는 새로운 자동 문서 분류 방법을 제시한다. 제시된 방법은 적은 수의 레이블이 있는 데이터로부터 학습된 후 많은 수의 레이블이 없는 데이터로 보강되는 일련의 분류기(classifier)에 기반한다. 레이블이 없는 데이터를 활용하기 때문에, 필요한 레이블이 있는 데이터의 수가 줄어들고, 분류 정확도가 향상된다. 두 개의 표준 데이터 집합에 대한 실험 결과, 레이블이 없는 데이터를 사용함으로써 분류 정확도가 증가함을 보였다. 분류 정확도는 전체 데이터의 2/3만 사용하고도 NIPS 2000 워크숍 데이터 집합에 대해서는 약 7.9% 정도, WebKB 데이터 집합에 대해서는 9.2% 증가하였다.

  • PDF

데이터 본질 기반의 데이터 분류 방법론 (A Data Taxonomy Methodology based on Their Origin)

  • 최미영;문창주;백두권;권주흠;이영무
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권2호
    • /
    • pp.163-176
    • /
    • 2010
  • 조직의 데이터를 효과적으로 관리하는 대표적 방법은 기존 데이터의 공유와 재사용을 촉진하여 데이터의 중복 생산을 방지하는 것이다. 데이터 공유와 재사용의 촉진을 위해서 기존 데이터의 체계적 구조화와 효율적인 검색이 지원되어야 한다. 이러한 점이 고려되지 않은 조직간 단절된 데이터 개발은 데이터 중복을 양산하고 데이터의 품질을 저하시킨다. 데이터 분류는 관리하는 데이터에 대한 체계적 정리로 원하는 데이터 요소의 빠른 검색을 가능하게 한다. 본 논문에서는 데이터 공유, 재사용과 통합을 극대화하고 MDR과 시멘틱 웹에서 효과적으로 사용될 수 있는 본질기반 데이터 분류 방법론을 제안한다. 본질기반 데이터 분류 방법론은 데이터 본질을 기반으로 데이터 분류 구조를 구성하여 업무분류에 독립적인 데이터 분류가 가능하다. 또한 제시된 데이터 분류 구조를 지원하는 데이터 분류 절차를 제시하여 다양한 데이터 요소들을 데이터 분류 구조에 따라 배치하는 방법을 보인다. 사례연구에서는 제안된 데이터 분류 구조와 데이터 분류절차가 효과적으로 실제에 적용 될수 있음을 보였다.

초거대 언어 모델로부터의 추론 데이터셋을 활용한 감정 분류 성능 향상 (Empowering Emotion Classification Performance Through Reasoning Dataset From Large-scale Language Model)

  • 박눈솔;이민호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제68차 하계학술대회논문집 31권2호
    • /
    • pp.59-61
    • /
    • 2023
  • 본 논문에서는 감정 분류 성능 향상을 위한 초거대 언어모델로부터의 추론 데이터셋 활용 방안을 제안한다. 이 방안은 Google Research의 'Chain of Thought'에서 영감을 받아 이를 적용하였으며, 추론 데이터는 ChatGPT와 같은 초거대 언어 모델로 생성하였다. 본 논문의 목표는 머신러닝 모델이 추론 데이터를 이해하고 적용하는 능력을 활용하여, 감정 분류 작업의 성능을 향상시키는 것이다. 초거대 언어 모델(ChatGPT)로부터 추출한 추론 데이터셋을 활용하여 감정 분류 모델을 훈련하였으며, 이 모델은 감정 분류 작업에서 향상된 성능을 보였다. 이를 통해 추론 데이터셋이 감정 분류에 있어서 큰 가치를 가질 수 있음을 증명하였다. 또한, 이 연구는 기존에 감정 분류 작업에 사용되던 데이터셋만을 활용한 모델과 비교하였을 때, 추론 데이터를 활용한 모델이 더 높은 성능을 보였음을 증명한다. 이 연구를 통해, 적은 비용으로 초거대 언어모델로부터 생성된 추론 데이터셋의 활용 가능성을 보여주고, 감정 분류 작업 성능을 향상시키는 새로운 방법을 제시한다. 제시한 방안은 감정 분류뿐만 아니라 다른 자연어처리 분야에서도 활용될 수 있으며, 더욱 정교한 자연어 이해와 처리가 가능함을 시사한다.

  • PDF

데이터 베이스를 이용한 웹 기반 계통수 추론 시스템 설계 (Design of Web-based Phylogentic Tree Inference System Using DataBase)

  • 김신석;황부현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 추계학술발표논문집 (상)
    • /
    • pp.121-124
    • /
    • 2001
  • 계통수는 특정 객체의 분류 즉 특정 객체로부터 추출한 염기서열을 이용하여 그 객체의 소속 분류 집단을 결정하기 위해서 사용될 수 있다. 만약 특정지역에서 획득한 토끼의 종을 구분하기 위해서 이미 분류된 토끼의 염기서열들을 가지고 염기서열들과의 관계를 표현하는 계통수를 제작함으로써, 객체를 분류 할 수 있다. 계통수 제작은 기존의 계통수 제작 도구들(MEGA등)이 사용되지만, 이러한 계통수 제작 도구는 객체의 어떤 특성에 의해서 종이 나뉘어지는 가는 예측 할 수 없다. 계통수 제작에 이용되는 염기서열 데이터는 기존의 염기서열 데이터 베이스들(EMBL, GenBank, DDBJ)에서 인터넷을 이용하여 찾을 수 있지만, 계통생물학을 위해 누적된 데이터가 아니므로, 계통수 제작을 위해서는 사용이 제한적이다. 또 계통수 제작 도구을 사용하기 위해서는 자신이 관련 염기서열 데이터를 수집하여야 한다. 본 논문은 웹기반 계통수 추론 시스템을 제시한다. 본 시스템은 염기서열 데이터를 검색하여, 계통 분류 즉 계통수 제작을 위한 데이터로 저장하고, 이를 이용하여 계통수를 그릴 수 있다. 또한 이렇게 저장된 데이터는 데이터 마이닝 분류 기법을 사용하여, 각 객체 분류 집단을 모델링하며, 분류 속성을 예측할 수 있다.

  • PDF

PCM 알고리즘과 베이시안 분류의 통합기법 (Integrating Classification Method using PCM Algorithm and Bayesian Method)

  • 전영준;김진일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.790-792
    • /
    • 2004
  • 본 논문은 PCM(Possibilistic C-Means) 알고리즘과 베이시안 분류 알고리즘을 통합한 고해상도 위성영상의 효과적인 분류방법을 제안하였다. 제안된 알고리즘은 학습데이터를 참고로 하여 PCM 알고리즘을 반복적인 과정 없이 수행한다. 각 분류항목별로 분류된 데이터에서 평균내부거리 내부에 해당되는 데이터들을 선정하여 각 항목별 비율을 구한 후 베이시안 분류기법의 사전확률로 적용하여 분류를 수행한다 PCM 알고리즘은 각 데이터와 특정 클러스터와의 거리에 소속도를 부여하는 퍼지 C-Means 알고리즘과 달리 소속도를 각 데이터와 클러스터 중심간의 절대거리에 의존하는 방법으로 퍼지 C-Means 알고리즘이 가지는 상대성 문제를 해결하였다. 제안된 분류 기법을 고해상도 다중분광 데이터인 IKONOS 위성영상에 적용하여 분류를 수행한 후 최대우도 분류기법과 비교한다.

  • PDF

레이블이 없는 문서를 이용한 SVM 기반의 점증적 지도학습 (Incremental Superised Learning based on SVM with Unlabeled Documents)

  • 김수영;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.301-303
    • /
    • 2002
  • 컴퓨터가 널리 보급되고 인터넷이 발전함에 따라 수없이 많은 정보가 디지털 형태로 생산되고 있다. 이러한 정보를 사람이 일일이 가공하고 분류하기에는 한계가 있으므로 자동으로 문서를 분류하고자 하는 연구가 대두되었다. 문서를 자동으로 분류하기 위해 기계학습 방법이 많이 이용되고 있다. 기계학습방법을 이용한 문서분류가 좋은 성능을 내기 위해서는 충분한 양의 학습데이터가 필요하다. 학습데이터를 만들기 위해서는 사람이 일일이 분류해야 하므로, 비용이 많이 든다. 본 논문에서는 적은양의 labeled 데이터로부터 시작하여, 점증적으로 unlabeled 데이터를 학습에 참여시킴으로써, 문서분류의 성능을 높이고자 한다. 실험을 통해 Unlabeled 문서데이터를 사용한 것이 좋은 성능을 보였음을 알 수 있다.

  • PDF

교사학습 알고리즘을 이용한 텍스트 분류 시스템 (A Text Classification System based on a Supervised Learning Algorithm)

  • 김진상;성정호;김성주
    • 한국데이타베이스학회:학술대회논문집
    • /
    • 한국데이타베이스학회 1998년도 국제 컨퍼런스: 국가경쟁력 향상을 위한 디지틀도서관 구축방안
    • /
    • pp.421-430
    • /
    • 1998
  • 지식경영을 위한 다양한 대상 업무중에서 텍스트 데이터의 마이닝은 특히 중요하다. 그 이유는 텍스트 데이터가 양적인 면에서 가장 풍부하고, 또 발견할 수 있는 지식을 가장 많이 포함하고 있기 때문이다. 본 논문에서는 텍스트 데이터베이스에서 지식발견을 위한 한 과정으로 텍스트 데이터베이스 내의 텍스트들을 분류하는 기법을 기술한다. 특히 문서 분류 방법은 데이터베이스의 일부 데이터를 훈련, 예제로 간주하여 교사 학습 알고리즘을 통해 학습한 후 나머지 데이터를 이용해 분류 정확성을 검증 및 향상시킨다. 시험 데이터로는 인터넷의 뉴스그룹의 기사를 이용하였고, 시험 결과 분류의 정확성은 한글 및 영문 모두 최소 70% 이상으로 나타났다.

  • PDF

위성 영상데이터의 주성분변환 및 주성분 기반 영상분류 (Principal Component Transformation of the Satellite Image Data and Principal-Components-Based Image Classification)

  • 서용수
    • 한국지리정보학회지
    • /
    • 제7권4호
    • /
    • pp.24-33
    • /
    • 2004
  • 원격탐사(remote sensing) 기술의 비약적인 발전과 함께 위성 영상데이터의 분광대역수가 급속히 증가하고 있다. 대역수의 증가로 영상데이터량이 급격히 증가하게 되고, 이에 따라 이들 데이터를 처리하기 위해서는 처리속도가 빠른 영상처리 기술이 필요하게 되었다. 분광 대역 수를 줄여 빠르게 처리하는 한가지 방법으로 널리 사용되고 있는 것이 주성분 변환법이다. 본 논문에서는 주성분 변환법에 대한 처리과정에 대해 논하였으며, 위성 영상데이터를 주성분 변환한 결과인 주성분 영상데이터를 분석하였다. 분석결과 실험 영상데이터의 경우, 3개의 주성분($PC_1$, $PC_2$, $PC_3$)의 누적 백분율 분산 값이 99.1%로 이는 3개의 주성분이 거의 대부분의 정보를 가지고 있음을 알 수 있었다. 3개의 주성분 영상데이터만을 사용한다면 데이터 저장을 위한 메모리 용량이나 데이터 전송시간 및 처리시간을 크게 감소시킬 수 있다. 또한 본 논문에서는 주성분 영상데이터를 최대유사분류법과 신경회로망을 이용한 다층 퍼셉트론 분류법으로 분류하고 결과를 평가한 후, 주성분 변환법이 갖는 차원축소 효과를 분석하였다. 분석결과 주성분 3개를 사용한 분류결과와 주성분 6개를 사용한 분류결과간의 분류정답률이 크게 차이가 나지 않았다. 이는 분류에 사용하는 영상데이터 수를 6개 차원에서 3개 차원으로 줄여도 비슷한 분류성능을 얻을 수 있음을 확인할 수 있었다.

  • PDF