Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.514-516
/
2017
금속탐지 센서는 공항, 유물 탐지, 지뢰 탐지 등 여러 분야에서 유용하게 사용하고 있다. 하지만 기존의 금속 탐지기의 경우 탐지되어진 물체를 구분할 수 없어 사람이 직접 그 물체가 어떤 것인지 확인을 해야 한다. 만약 이 과정을 컴퓨터를 통해 처리할 수 있다면 물체가 무엇인지 확인하는 검사시간을 줄일 수 있으며, 인적자원의 낭비를 줄일 수 있다. 이 연구에서는 AMR 자기 스위치 센서를 이용하여 금속을 탐지하고, 데이터를 분석하여 탐지된 물체의 철의 함유량을 파악, 어떠한 물체인지 유추하는 것을 목표로 하였다. 이를 위해 금속 함유량이 다른 여러 물체의 데이터, 센서를 지나가는 속도에 다른 데이터, 센서와의 거리에 다른 데이터등을 측정하였고, 이를 통해 철의 함량을 구하기 위한 요소를 파악하였다.
Kim, Ji-Young;Kim, Ju-Yeon;Yu, Eun-Jong;Kim, Dae-Young
Proceedings of the Computational Structural Engineering Institute Conference
/
2010.04a
/
pp.687-691
/
2010
구조물의 건전도를 평가하기 위해 상시 구조물 계측을 이용한 Structural Health Monitoring (SHM) 시스템을 적용하게 된다. SHM 시스템의 궁극적 목적은 계측된 데이터를 이용하여 구조물의 손상위치 및 손상정도를 분석하여 거주자에게 유지관리정보와 대처요령 신속하게 제공하는 것이다. 따라서 본 연구에서는 구조물의 손상탐지를 위해 인공신경망(Artificial Neural Network)을 도입한 알고리즘을 수립하고, 이를 3층 실대 RC Mock-up 구조물에 적용하여 성능을 평가하였다. 먼저 인공신경망의 학습을 위해 구조해석 프로그램을 이용하여 구조물의 손상에 따른 동적특성 변화 데이터베이스를 구축하였다. 그리고 학습된 인공망에 실제 구조물에서 추출한 동특성의 변화를 입력하여 손상탐지를 실시하였다. 이를 통해 인공신경망의 학습방법, 학습데이터의 정규화 방법 등을 규명하고 인공신경망을 이용한 손상탐지의 효과를 분석하였다.
In recent years, the number of systems for the analysis of large volumes of data is increasing. Hadoop, a representative big data system, stores and processes the large data in the distributed environment of multiple servers, where system-resource management is very important. The authors attempted to detect anomalies from the rapid changing of the log data that are collected from the multiple servers using simple but efficient anomaly-detection techniques. Accordingly, an Apache Hive storage architecture was designed to store the log data that were collected from the multiple servers in the Hadoop ecosystem. Also, three anomaly-detection techniques were designed based on the moving-average and 3-sigma concepts. It was finally confirmed that all three of the techniques detected the abnormal intervals correctly, while the weighted anomaly-detection technique is more precise than the basic techniques. These results show an excellent approach for the detection of log-data anomalies with the use of simple techniques in the Hadoop ecosystem.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.33
no.4
/
pp.259-266
/
2015
Change detection using the heterogeneous data such as aerial images, aerial LiDAR (Light Detection And Ranging), and satellite images needs to be developed to efficiently monitor the complicating land use change. We approached this problem not relying on the intensity value of the geospatial image, but by using RECC(Relative Edge Cross Correlation) which is based on the edge information over the urban and suburban area. The experiment was carried out for the aerial LiDAR data with high-resolution Kompsat-2 and −3 images. We derived the optimal window size and threshold value for RECC-based change detection, and then we observed the overall change detection accuracy of 80% by comparing the results to the manually acquired reference data.
Proceedings of the Korea Information Processing Society Conference
/
2012.11a
/
pp.527-530
/
2012
비디오 데이터를 효율적으로 검색, 정렬, 탐색, 분류하기 위해서는 프레임 간의 샷 전환 탐지가 선행되어야 한다. 본 논문에서는 디지털 비디오 데이터의 샷 전환 탐지를 위해 비디오 스트림을 구성하고 있는 각 프레임들 간의 화소 밝기 차이와 히스토그램의 변화를 이용하였다. 플래쉬 등과 같은 인위적이고 급격한 화소 밝기변화에 의한 오류를 최소화하기 위해 샷 전환 탐지 이전에 각 프레임 간의 밝기 보상을 적용하였다. 밝기 보정 된 프레임으로부터 프레임의 서브 블록 간의 지역적 화소 밝기 정보, 그리고 프레임의 화소 밝기 값 히스토그램을 비교하여 샷 전환을 탐지한다. 실험에서 제안된 알고리즘은 국가기록원 소장 비디오에 적용하여 효과가 있음을 보였다.
Change detection, which finds changes in remote sensing images of the same location captured at different times, is very important because it is used in various applications. However, registration errors, building displacement errors, and shadow errors cause false positives. To solve these problems, we propose a novle deep convolutional network called CADNet (Change Attention Dense Siamese Network). CADNet uses FPN (Feature Pyramid Network) to detect multi-scale changes, applies a Change Attention Module that attends to the changes, and uses DenseNet as a feature extractor to use feature maps that contain both low-level and high-level features for change detection. CADNet performance measured from the Precision, Recall, F1 side is 98.44%, 98.47%, 98.46% for WHU datasets and 90.72%, 91.89%, 91.30% for LEVIR-CD datasets. The results of this experiment show that CADNet can offer better performance than any other traditional change detection method.
Park, Si-Jeo;Park, Cheong-Sool;Kim, Sung-Shick;Baek, Jun-Geol
Journal of the Korea Society for Simulation
/
v.20
no.4
/
pp.67-79
/
2011
The statistical process control (SPC) assumes that observations follow the particular statistical distribution and they are independent to each other. However, the time-series data do not always follow the particular distribution, and most of cases are autocorrelated, therefore, it has limit to adopt the general SPC in tim series process. In this study, we propose a MPBC (Model Parameter Based Control-chart) method for fault detection in time-series processes. The MPBC builds up the process as a time-series model, and it can determine the faults by detecting changes parameters in the model. The process we analyze in the study assumes that the data follow the ARMA (p,q) model. The MPBC estimates model parameters using RLS (Recursive Least Square), and $K^2$-control chart is used for detecting out-of control process. The results of simulations support the idea that our proposed method performs better in time-series process.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.31
no.6_1
/
pp.483-491
/
2013
By a development of car navigation systems and mobile or positioning technology, it increases interest in location based services, especially pedestrian navigation systems. Updating of digital maps is important because digital maps are mass data and required to short updating cycle. In this paper, we proposed change detection for different network data-sets based on areal feature matching. Prior to change detection, we defined type of updating between different network data-sets. Next, we transformed road lines into areal features(block) that are surrounded by them and calculated a shape similarity between blocks in different data-sets. Blocks that a shape similarity is more than 0.6 are selected candidate block pairs. Secondly, we detected changed-block pairs by bipartite graph clustering or properties of a concave polygon according to types of updating, and calculated Fr$\acute{e}$chet distance between segments within the block or forming it. At this time, road segments of KAIS map that Fr$\acute{e}$chet distance is more than 50 are extracted as updating road features. As a result of accuracy evaluation, a value of detection rate appears high at 0.965. We could thus identify that a proposed method is able to apply to change detection between different network data-sets.
Typical anomaly detection algorithms are trained by using prior data. Thus the batch learning based algorithms cause inevitable performance degradation when characteristics of newly incoming normal data change over time. We propose an online anomaly detection algorithm which can consider the gradual characteristic changes of incoming normal data. The proposed algorithm based on one-class classification model includes both offline and online learning procedures. In offline learning procedure, the algorithm learns the prior data to be close to centroid of the latent space and then updates the centroid of the latent space incrementally by new incoming data. In the online learning, the algorithm continues learning by using the updated centroid. Through experiments using public underwater acoustic data, the proposed online anomaly detection algorithm takes only approximately 2 % additional learning time for the incremental centroid update and learning. Nevertheless, the proposed algorithm shows 19.10 % improvement in Area Under the receiver operating characteristic Curve (AUC) performance compared to the offline learning model when new incoming normal data comes.
Proceedings of the Korea Information Processing Society Conference
/
2003.05c
/
pp.2049-2052
/
2003
인터넷의 급속한 발전으로 인한 유용성 이면에는, 공공 시스템에 대한 악의적인 침입에 따른 피해가 날로 증가되고 있다. 이에 대비하기 위한 침입 탐지 시스템들이 소개되고 있으나, 공격의 형태가 다양하게 변화되고 있기 때문에 침입탐지 시스템도 이에 대비할 수 있도록 지속적인 연구 노력이 필요하다. 최근의 다양한 연구노력 중에는 데이터 마이닝 기법을 이용하여 침입자의 정보를 분석하는 연구가 활발히 진행되고 있다. 본 논문에서는 데이터 마이닝 기법을 사용하여 KDD CUP 99의 훈련 집합(Training Set)을 기반으로 효과적인 분류를 하기 위한 모델을 제시하였다. 제시된 모델에서는 휴리스틱을 적용하여 효과적으로 필요한 데이터를 생성할 수 있었으며, 또한 각 공격 유형마다 분류자를 두어 보다 정확하고 효율적인 탐지가 가능하도록 하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.