본 논문에서는 잡음 추가와 네트웍 앙상블을 이용하는 기법으로 최근에 제안된 가상 샘플 생성 방법(VSG:Virtual Sample Generation)을 개선하는 방법을 제안하고, 이를 대표적인 앙상블학습 알고리즘인 Bagging, Boosting과 비교한다. 기존의 가상 샘플 생성 방법에 기초하여 입력 데이터의 분포를 고려하여 가상 샘플을 생성하는 방법을 제안한다. 이 방법은 입력 분포의 밀도가 높은 곳에서 가장 샘플로 인한 과소 적합을 방지하고 밀도가 낮은 곳에서 가상 샘플로 인한 과도 적합을 방지하기 위한 것이다. 본 논문은 입력 데이터의 밀도를 추정하는 새로운 과정을 정리하고 입력 분포에 따라 적합한 가상 샘플을 생성하는 방법을 고안했다. 그리고 제안하는 방법의 일반화 성능 향상을 보이기 위해 여러 가지의 합성 데이터를 사용하여 실험을 하였고 이를 Bagging, Boosting, VSG의 성능과 비교하였다.
본 논문에서는 고정밀 3차원 데이터의 획득, 복원 및 랜더링과 그에 따르는 고속처리에 필요한 효율적인 기술 소개 및 이에 따른 문제점에 대해 소개한다. 또한 3차원 데이터를 획득하기 위한 하드웨어에 대한 소개와 그에 필요한 SDK 등의 차이점 및 특징에 대해 소개하고, 이를 복원 및 랜더링 할 때의 이슈에 대해 소개한다. 특히 렌더링에서는 대용량의 고정밀 3차원 데이터에 대한 실시간 처리 문제에 대해 소개하고, 이러한 이슈들을 해결하는 이론에 대해 간단히 소개한다. 본 논문에서는 기존에 소개되었던 기술과 그에 따른 문제점에 대해 소개하고, 이와 관련된 사항에 대해 해결하는 방법에 대해 소개한다.
선박 및 해상교통관제에 있어서 교통 혼잡구역에 대한 선박교통밀도 예측은 선박충돌사고 예방에 중요하다. 선박 교통밀도 예측정보는 사전에 진입하는 선박들에게 속력조정, 우회항로 이용 등 사전 조치가 가능하다. 본 연구에서는 해상 선박교통상황을 딥러닝 네트워크에 학습한 주의구역 선박교통류 예측 모델(Ship Traffic Extraction Network, STENet)을 제안하여 주의구역의 선박교통류 예측을 수행하고자 한다. STENet 모델 학습을 위해 여수해역 AIS 데이터를 전처리하고, 생성된 입력(해상교통상황)-출력(주의구역 교통밀도) 쌍 데이터를 적용하여 STENet 모델을 학습하였다. 학습된 모델을 이용하여 선박교통류 예측을 한 결과, 중기예측은 표준 절대 오차(mean absolute error)가 0.4-0.5척이 였으며, 장기예측은 0.7-0.8척의 오차로 기존의 Dead Reckoning에 의한 방법보다 50% 이상 교통밀도 예측성능이 향상 되었다.
센서 네트워크 클러스터링 기법은 네트워크의 수명연장에 효율적인 방법이다. 이에 많은 연구에서 효율적인 클러스터링 기법을 제안해 왔으며 지금도 진행 중에 있다. 그러나 기존에 제시된 연구 결과는 센서 노드가 수집하는 데이터가 단일 데이터가 아닌 다중 데이터일 경우, 즉 센서 노드에 여러 개의 센서가 장착되어 있을 경우 데이터 수집 및 전송에 있어 단일 데이터에 비해 비효율적으로 동작 할 수 있다. 이에 본 논문은 다중 센서로부터 수집되는 데이터의 효율적인 전송을 지원하는 클러스터링 기법 개발을 위해 고려해야 할 사항에 대해 연구하였다. 연구 결과, 우리는 센서가 수집하는 데이터의 관심도, 데이터 변화량, 데이터의 내부적인 처리방법, 센서 노드의 배치 밀도 및 데이터 수집 장치의 감지범위가 다중 데이터 센서 네트워크의 클러스터링 기법 설계에 고려되어야 함을 보였다.
최근 다양한 산업에서 첨단기술의 적용으로 높은 생산성 향상을 이루고 있지만 건설산업의 경우 생산성 향상이 비교적 낮게 조사되어, 이를 극복하기 위한 첨단기술 연구가 빠르게 진행되고 있다. 여러 첨단기술 중 3차원 스캔 기술은 실제 대상물을 손쉽게 디지털화 할 수 있다는 점에서 건설현장의 3차원 디지털 지형 모델 생성을 위한 기술로 널리 활용되고 있다. 특히 3차원 디지털 지형 모델은 토공 중장비의 자동제어 및 가이던스 등과 같은 건설 자동화의 기초자료가 될 수 있어 지형 스캔데이터의 높은 품질이 요구되고 있다. 3차원 디지털 지형 모델의 품질은 3D 스캐너의 성능 및 취득환경뿐 아니라 지형 스캔데이터 취득 후 3차원 디지털 지형 모델 생성을 위한 전처리 과정인 노이즈제거, 정합 및 병합과정 등 또한 많은 영향을 끼치고 있어, 지형 스캔데이터 처리의 성능 증진이 필요할 것으로 보인다. 본 연구에서는 3차원 디지털 지형 모델 생성을 위한 전처리 과정 중 정합과정에서 발생하는 지형 스캔데이터의 밀도 불균일 문제를 해결하고자 한다. 이를 위해 본 연구에서 개발한 정합 후처리 기술인 '픽셀기반 점군비교 알고리즘'을 제시하였으며, 실제 토공현장에서 취득한 지형 스캔데이터를 활용해 개발한 알고리즘의 성능검증을 수행하여 지형 스캔데이터 정합 후 불균일 문제의 개선 가능성을 검증하고 밀도 별 지형 스캔데이터에 대한 알고리즘의 최적 파라미터를 제시하였다.
본 논문에서는 비지도학습 모델인 오토인코더와 가우시안 커널 밀도 추정 함수를 이용하여 차량용 CAN 네트워크에서 비정상적인 데이터를 탐지하는 방안을 제안한다. 제안하는 오토인코더 모델은 정상 데이터에서 CAN 프레임의 ID만으로 학습시킨다. 이후 가우시안 커널 밀도 추정 함수를 이용하여 구한 최적의 프레임 개수와 손실 임계값을 가지는 모델을 사용하여 비정상 데이터를 효과적으로 탐지한다. DoS 공격, Gear 스푸핑 공격, RPM 스푸핑 공격, Fuzzy 공격 등 4가지 공격 데이터로 오토인코더 기반 IDS를 검증하였으며 성능을 평가하였다. 기존 비지도학습 기반 모델들과 비교했을 때 우수한 성능을 나타냈으며 모든 평가 지표에서 99% 이상의 성능을 나타냈다.
연구목적:본 연구는 화재 시 소방관에 의한 카운터플로우 현상에 따른 밀도와 속도 실험 데이터를 제시함을 목적으로 한다. 연구방법: 복도에서의 실험을 통하여 데이터를 측정하였다. 측정값을 위하여 복도폭 1.5m 및 2m 각각에 대하여 일반적인 유동상황과 카운터플로우 발생상황을 구현하였다. 이동 시 데이터는 카메라를 통해 측정되었으며, 영상분석을 통해 데이터를 확보하였다. 연구결과: 복도에서의 카운터플로우의 발생은 평균밀도를 약 $0.55P/m^2$ 정도 상승시키고, 정 방향 이동인들의 평균보행속도는 0.61m/s정도가 감소됨을 확인하였다. 이 데이터는 카운터플로우가 발생되는 시점에서 측정되었다. 결론: 카운터플로우 현상의 발생은 순간적으로 밀도를 상승시키고 평균보행속도의 감소를 초래함이 확인되었다. 전체피난에서의 카운터풀로우 영향에 대한 추가실험이 필요하다.
본 논문에서는 Gaussian Mixture Model을 이용한 Gustafson-Kessel 알고리즘의 성능을 개선하였다. 분포 및 밀도가 다른 데이터에 대하여 적절한 클러스터 파라미터를 추정함으로써 클러스터링의 성능을 개선한다. 일반적인 클러스터링 알고리즘의 경우, 데이터가 편중되거나 각 데이터의 밀도가 서로 틀린 경우 클러스터의 파라미터가 정확하게 클러스터를 표현하지 못하는 문제점을 가지고 있다. 제안된 방법에서는 Gustafson-Kessel 알고리즘을 이용하여 클러스터 파라미터를 추정하며 알고리즘내의 파라미터 일부를 Gaussian Mixture Model을 이용하여 동적으로 갱신하였다 시뮬레이션을 통하여 제안된 방법의 유용성을 보인다.
위상이 불규칙적으로 변하는 RZ와 NRZ 신호에 대하여 전력 밀도 스펙트럼을 구하였고 신호의 펄스폭 점유율은 가변으로 하였다. 이때 불규칙 위상의 확률분포는 구간 내에서 일정하다고 가정한다. 단극성 지터없는 신호는 입력된 신호의 기본 주파수의 정수배마다 스펙트럼의 이산성분이 존재하며 이 것은 데이터를 찾기 위한 타이밍 신호로써 이용된다. 그러나 지터가 유입되는 경우에는 이 이산 신호성 분이 점차 감소하게 되며, 균일한 확률 분포를 갖는 지터의 경우는 완전히 소멸하였음을 확인하였다.
공학문제에서 많은 확률 변수들은 상관성을 가지고 있고, 입력변수의 상관성은 기계시스템의 통계적 성능 분석 결과에 큰 영향을 미친다. 하지만, 상관 변수들은 결합분포함수를 모델링하기 어렵다는 이유로 종종 독립변수로 취급되거나 특정한 모수적 모델로 표현되는 경우가 많으며, 특히 데이터가 적은 경우 결합분포함수를 정확히 모델링하는데 더 큰 어려움이 있다. 본 연구에서 개발된 경계데이터를 이용한 다변량 커널밀도추정은 비선형성을 갖는 다양한 형태의 다변량 확률 분포 추정을 위해 개발되었다. 다변량 커널밀도추정은 주어진 데이터와 균등분포함수의 파라미터의 신뢰구간으로부터 생성된 경계데이터를 결합하여 데이터의 질과 수에 덜 민감하다. 따라서 제안된 방법은 보수적인 통계모델링과 신뢰성 해석 결과를 도출할 수 있으며, 통계시뮬레이션과 공학예제를 통해 그 성능을 검증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.