• Title/Summary/Keyword: 데이터 밀도

검색결과 916건 처리시간 0.025초

입력 데이터의 분포를 고려한 가상 샘플 생성 (Virtual Samples Generation Based on the Distriburion of Input Data)

  • 이봉기;임용업;조성준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.302-304
    • /
    • 2000
  • 본 논문에서는 잡음 추가와 네트웍 앙상블을 이용하는 기법으로 최근에 제안된 가상 샘플 생성 방법(VSG:Virtual Sample Generation)을 개선하는 방법을 제안하고, 이를 대표적인 앙상블학습 알고리즘인 Bagging, Boosting과 비교한다. 기존의 가상 샘플 생성 방법에 기초하여 입력 데이터의 분포를 고려하여 가상 샘플을 생성하는 방법을 제안한다. 이 방법은 입력 분포의 밀도가 높은 곳에서 가장 샘플로 인한 과소 적합을 방지하고 밀도가 낮은 곳에서 가상 샘플로 인한 과도 적합을 방지하기 위한 것이다. 본 논문은 입력 데이터의 밀도를 추정하는 새로운 과정을 정리하고 입력 분포에 따라 적합한 가상 샘플을 생성하는 방법을 고안했다. 그리고 제안하는 방법의 일반화 성능 향상을 보이기 위해 여러 가지의 합성 데이터를 사용하여 실험을 하였고 이를 Bagging, Boosting, VSG의 성능과 비교하였다.

  • PDF

고정밀 3차원 데이터의 렌더링 기술 연구 (Analysis of Rendering Techniques for High-precision 3D Data)

  • 가라팟;장진욱;김수균
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2020년도 제62차 하계학술대회논문집 28권2호
    • /
    • pp.59-60
    • /
    • 2020
  • 본 논문에서는 고정밀 3차원 데이터의 획득, 복원 및 랜더링과 그에 따르는 고속처리에 필요한 효율적인 기술 소개 및 이에 따른 문제점에 대해 소개한다. 또한 3차원 데이터를 획득하기 위한 하드웨어에 대한 소개와 그에 필요한 SDK 등의 차이점 및 특징에 대해 소개하고, 이를 복원 및 랜더링 할 때의 이슈에 대해 소개한다. 특히 렌더링에서는 대용량의 고정밀 3차원 데이터에 대한 실시간 처리 문제에 대해 소개하고, 이러한 이슈들을 해결하는 이론에 대해 간단히 소개한다. 본 논문에서는 기존에 소개되었던 기술과 그에 따른 문제점에 대해 소개하고, 이와 관련된 사항에 대해 해결하는 방법에 대해 소개한다.

  • PDF

딥러닝을 이용한 VTS 주의구역 선박교통류 예측 모델(STENet) 개발

  • 김광일;김주성;정초영;이건명
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2018년도 추계학술대회
    • /
    • pp.275-277
    • /
    • 2018
  • 선박 및 해상교통관제에 있어서 교통 혼잡구역에 대한 선박교통밀도 예측은 선박충돌사고 예방에 중요하다. 선박 교통밀도 예측정보는 사전에 진입하는 선박들에게 속력조정, 우회항로 이용 등 사전 조치가 가능하다. 본 연구에서는 해상 선박교통상황을 딥러닝 네트워크에 학습한 주의구역 선박교통류 예측 모델(Ship Traffic Extraction Network, STENet)을 제안하여 주의구역의 선박교통류 예측을 수행하고자 한다. STENet 모델 학습을 위해 여수해역 AIS 데이터를 전처리하고, 생성된 입력(해상교통상황)-출력(주의구역 교통밀도) 쌍 데이터를 적용하여 STENet 모델을 학습하였다. 학습된 모델을 이용하여 선박교통류 예측을 한 결과, 중기예측은 표준 절대 오차(mean absolute error)가 0.4-0.5척이 였으며, 장기예측은 0.7-0.8척의 오차로 기존의 Dead Reckoning에 의한 방법보다 50% 이상 교통밀도 예측성능이 향상 되었다.

  • PDF

센서 네트워크 클러스터링 기법의 에너지 효율적인 다중 데이터 지원 방법 연구 (A Study of an Energy Efficient Method of Clustering Scheme for Supporting Multiple Data in Sensor Networks)

  • 최동민;정일용
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2012년도 추계학술발표대회
    • /
    • pp.101-103
    • /
    • 2012
  • 센서 네트워크 클러스터링 기법은 네트워크의 수명연장에 효율적인 방법이다. 이에 많은 연구에서 효율적인 클러스터링 기법을 제안해 왔으며 지금도 진행 중에 있다. 그러나 기존에 제시된 연구 결과는 센서 노드가 수집하는 데이터가 단일 데이터가 아닌 다중 데이터일 경우, 즉 센서 노드에 여러 개의 센서가 장착되어 있을 경우 데이터 수집 및 전송에 있어 단일 데이터에 비해 비효율적으로 동작 할 수 있다. 이에 본 논문은 다중 센서로부터 수집되는 데이터의 효율적인 전송을 지원하는 클러스터링 기법 개발을 위해 고려해야 할 사항에 대해 연구하였다. 연구 결과, 우리는 센서가 수집하는 데이터의 관심도, 데이터 변화량, 데이터의 내부적인 처리방법, 센서 노드의 배치 밀도 및 데이터 수집 장치의 감지범위가 다중 데이터 센서 네트워크의 클러스터링 기법 설계에 고려되어야 함을 보였다.

토공현장 스캔데이터 밀도 균일화를 위한 정합 후처리 기술 개발 (Development of Registration Post-Processing Technology to Homogenize the Density of the Scan Data of Earthwork Sites)

  • 김용건;박수열;김석
    • 대한토목학회논문집
    • /
    • 제42권5호
    • /
    • pp.689-699
    • /
    • 2022
  • 최근 다양한 산업에서 첨단기술의 적용으로 높은 생산성 향상을 이루고 있지만 건설산업의 경우 생산성 향상이 비교적 낮게 조사되어, 이를 극복하기 위한 첨단기술 연구가 빠르게 진행되고 있다. 여러 첨단기술 중 3차원 스캔 기술은 실제 대상물을 손쉽게 디지털화 할 수 있다는 점에서 건설현장의 3차원 디지털 지형 모델 생성을 위한 기술로 널리 활용되고 있다. 특히 3차원 디지털 지형 모델은 토공 중장비의 자동제어 및 가이던스 등과 같은 건설 자동화의 기초자료가 될 수 있어 지형 스캔데이터의 높은 품질이 요구되고 있다. 3차원 디지털 지형 모델의 품질은 3D 스캐너의 성능 및 취득환경뿐 아니라 지형 스캔데이터 취득 후 3차원 디지털 지형 모델 생성을 위한 전처리 과정인 노이즈제거, 정합 및 병합과정 등 또한 많은 영향을 끼치고 있어, 지형 스캔데이터 처리의 성능 증진이 필요할 것으로 보인다. 본 연구에서는 3차원 디지털 지형 모델 생성을 위한 전처리 과정 중 정합과정에서 발생하는 지형 스캔데이터의 밀도 불균일 문제를 해결하고자 한다. 이를 위해 본 연구에서 개발한 정합 후처리 기술인 '픽셀기반 점군비교 알고리즘'을 제시하였으며, 실제 토공현장에서 취득한 지형 스캔데이터를 활용해 개발한 알고리즘의 성능검증을 수행하여 지형 스캔데이터 정합 후 불균일 문제의 개선 가능성을 검증하고 밀도 별 지형 스캔데이터에 대한 알고리즘의 최적 파라미터를 제시하였다.

가우시안 커널 밀도 추정 함수를 이용한 오토인코더 기반 차량용 침입 탐지 시스템 (Autoencoder-Based Automotive Intrusion Detection System Using Gaussian Kernel Density Estimation Function)

  • 김동현;임형철;이성수
    • 전기전자학회논문지
    • /
    • 제28권1호
    • /
    • pp.6-13
    • /
    • 2024
  • 본 논문에서는 비지도학습 모델인 오토인코더와 가우시안 커널 밀도 추정 함수를 이용하여 차량용 CAN 네트워크에서 비정상적인 데이터를 탐지하는 방안을 제안한다. 제안하는 오토인코더 모델은 정상 데이터에서 CAN 프레임의 ID만으로 학습시킨다. 이후 가우시안 커널 밀도 추정 함수를 이용하여 구한 최적의 프레임 개수와 손실 임계값을 가지는 모델을 사용하여 비정상 데이터를 효과적으로 탐지한다. DoS 공격, Gear 스푸핑 공격, RPM 스푸핑 공격, Fuzzy 공격 등 4가지 공격 데이터로 오토인코더 기반 IDS를 검증하였으며 성능을 평가하였다. 기존 비지도학습 기반 모델들과 비교했을 때 우수한 성능을 나타냈으며 모든 평가 지표에서 99% 이상의 성능을 나타냈다.

복도에서 소방관에 의한 카운터플로우 발생 시 밀도와 속도 측정 (The Counterflow Speed and Density of a Fire fighter in Corridor)

  • 김운형;김흥열;정우인;김종훈
    • 한국재난정보학회 논문집
    • /
    • 제15권1호
    • /
    • pp.76-83
    • /
    • 2019
  • 연구목적:본 연구는 화재 시 소방관에 의한 카운터플로우 현상에 따른 밀도와 속도 실험 데이터를 제시함을 목적으로 한다. 연구방법: 복도에서의 실험을 통하여 데이터를 측정하였다. 측정값을 위하여 복도폭 1.5m 및 2m 각각에 대하여 일반적인 유동상황과 카운터플로우 발생상황을 구현하였다. 이동 시 데이터는 카메라를 통해 측정되었으며, 영상분석을 통해 데이터를 확보하였다. 연구결과: 복도에서의 카운터플로우의 발생은 평균밀도를 약 $0.55P/m^2$ 정도 상승시키고, 정 방향 이동인들의 평균보행속도는 0.61m/s정도가 감소됨을 확인하였다. 이 데이터는 카운터플로우가 발생되는 시점에서 측정되었다. 결론: 카운터플로우 현상의 발생은 순간적으로 밀도를 상승시키고 평균보행속도의 감소를 초래함이 확인되었다. 전체피난에서의 카운터풀로우 영향에 대한 추가실험이 필요하다.

개선된 Gustafson-Kessel 알고리즘을 이용한 퍼지 클러스터링 (Fuzzy Clustering with Improving Gustafson-Kessel Algorithm)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 춘계 학술대회 학술발표 논문집
    • /
    • pp.239-242
    • /
    • 2003
  • 본 논문에서는 Gaussian Mixture Model을 이용한 Gustafson-Kessel 알고리즘의 성능을 개선하였다. 분포 및 밀도가 다른 데이터에 대하여 적절한 클러스터 파라미터를 추정함으로써 클러스터링의 성능을 개선한다. 일반적인 클러스터링 알고리즘의 경우, 데이터가 편중되거나 각 데이터의 밀도가 서로 틀린 경우 클러스터의 파라미터가 정확하게 클러스터를 표현하지 못하는 문제점을 가지고 있다. 제안된 방법에서는 Gustafson-Kessel 알고리즘을 이용하여 클러스터 파라미터를 추정하며 알고리즘내의 파라미터 일부를 Gaussian Mixture Model을 이용하여 동적으로 갱신하였다 시뮬레이션을 통하여 제안된 방법의 유용성을 보인다.

  • PDF

균일한 확률 밀도를 갖는 위상 불규칙 신호의 전력 스펙트럼 밀도 (Power Spectral Density of Jittered Signal with Uniform Probability Density Function)

  • 유홍균;최홍섭;안수길
    • 한국음향학회지
    • /
    • 제5권4호
    • /
    • pp.16-21
    • /
    • 1986
  • 위상이 불규칙적으로 변하는 RZ와 NRZ 신호에 대하여 전력 밀도 스펙트럼을 구하였고 신호의 펄스폭 점유율은 가변으로 하였다. 이때 불규칙 위상의 확률분포는 구간 내에서 일정하다고 가정한다. 단극성 지터없는 신호는 입력된 신호의 기본 주파수의 정수배마다 스펙트럼의 이산성분이 존재하며 이 것은 데이터를 찾기 위한 타이밍 신호로써 이용된다. 그러나 지터가 유입되는 경우에는 이 이산 신호성 분이 점차 감소하게 되며, 균일한 확률 분포를 갖는 지터의 경우는 완전히 소멸하였음을 확인하였다.

  • PDF

다변량 확률분포함수의 추정을 위한 MKDE-ebd 개발 (Development of MKDE-ebd for Estimation of Multivariate Probabilistic Distribution Functions)

  • 강영진;노유정;임오강
    • 한국전산구조공학회논문집
    • /
    • 제32권1호
    • /
    • pp.55-63
    • /
    • 2019
  • 공학문제에서 많은 확률 변수들은 상관성을 가지고 있고, 입력변수의 상관성은 기계시스템의 통계적 성능 분석 결과에 큰 영향을 미친다. 하지만, 상관 변수들은 결합분포함수를 모델링하기 어렵다는 이유로 종종 독립변수로 취급되거나 특정한 모수적 모델로 표현되는 경우가 많으며, 특히 데이터가 적은 경우 결합분포함수를 정확히 모델링하는데 더 큰 어려움이 있다. 본 연구에서 개발된 경계데이터를 이용한 다변량 커널밀도추정은 비선형성을 갖는 다양한 형태의 다변량 확률 분포 추정을 위해 개발되었다. 다변량 커널밀도추정은 주어진 데이터와 균등분포함수의 파라미터의 신뢰구간으로부터 생성된 경계데이터를 결합하여 데이터의 질과 수에 덜 민감하다. 따라서 제안된 방법은 보수적인 통계모델링과 신뢰성 해석 결과를 도출할 수 있으며, 통계시뮬레이션과 공학예제를 통해 그 성능을 검증하였다.