• Title/Summary/Keyword: 데이터 모델 평가

Search Result 2,530, Processing Time 0.031 seconds

Developing the framework of level diagnosis for green data center (그린데이터센터의 수준진단 프레임워크 개발)

  • Ra, Jong-Hei;Lee, Sang-Hak
    • Journal of Digital Convergence
    • /
    • v.9 no.2
    • /
    • pp.141-152
    • /
    • 2011
  • The data center has become an increasingly important part of most business operations. An increasing demand for computation has led to increasing industry energy consumption. Therefore, higher-than-normal rates of energy efficiency have become a core issue in the life cycle of data center. In this paper, we proposed the framework of level diagnosis for green data centre that can be used to diagnose the levels of capability maturity model. This framework contains the 5 key areas such as construction, air-conditioning, electricity, information technology, organization and indicators that can be applied as basic level diagnosis guide for green data center.

An Analysis of Software Metrics Using the SPEM(Software Project Estimation Model) (소프트웨어 프로젝트 평가모델을 통한 소프트 웨어 메트릭스 분석)

  • Lee, J.K.;Shin, S.K.;Nam, S.S.;Park, K.C.
    • Electronics and Telecommunications Trends
    • /
    • v.17 no.5 s.77
    • /
    • pp.107-118
    • /
    • 2002
  • 본 논문은 대형 프로젝트를 수행하는 데 있어서 필요한 리소스, 인력, 개발비용 및 소프트웨어 소스에 대한 데이터를 추정하여 프로젝트의 효율성을 평가하는 모델인 소프트웨어 프로젝트 평가모델을 이용하여 기 수행된 프로젝트의 경험데이터와 수행되고 있는 프로젝트의 소프트웨어 메트릭스(metrics) 데이터를 활용하여 생산성, 품질, 자원투입 효과, 개발될 소프트웨어 소스 규모 등을 추정해 보고 이를 경험적인 모델(empirical model)에 적용하여 프로젝트 별로 평가, 비교 분석해 본다. 또 향후 유사 프로젝트 관리(similar project management)에 필요한 사항들을 제안한다.

Performance of a Model to Predict Complication Occurance after Radical Gastrectomy according to Thresholds (임계값 설정을 통한 근치적 위절제술 후 합병증 발생 예측 모델의 성능 평가)

  • Su-Yeon Lim;Ja-Yun Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.687-689
    • /
    • 2024
  • 위암은 전 세계적인 주요 건강문제이며, 근치적 위절제술은 위암의 표준치료이다. 근치적 위절제술 후 치료목표는 합병증 발생을 낮춰 병전 상태로 빠르게 회복하는 데 있다. 따라서, 근치적 위절제술 후 합병증 발생 여부를 선별하여 예측할 수 있는 성능이 좋은 모델을 개발하는 것은 위암환자의 회복에 매우 중요하다. 랜덤포레스트 모델은 여러 개의 결정트리를 활용한 배깅 방식의 대표적인 알고리즘으로 의료 데이터를 기반으로 한 예측에 있어 뛰어난 성능을 보여 주었다. 그러나 실제 데이터는 불균형이 빈번하게 발생하여 모델의 예측 성능에 영향을 미치므로, 최적의 분류 임계값을 설정하여 다수 클래스에 대한 편향을 줄이는 것이 중요하다. 따라서, 본 연구는 최근 10년 간 일개 대학병원의 전자의무기록 데이터를 활용하여 근치적 위절제술 후 합병증 발생을 예측하는 랜덤포레스트 모델을 개발하고, 임계값 설정을 통해 불균형 데이터에 대한 모델의 성능을 평가하고자 한다.

Performance Evaluation of High-Level Ozone Prediction Model Based on the Confidence Level Test (신뢰수준평가에 기반한 고농도 오존 예측모델의 성능평가)

  • 정재룡;안항배;송치권;배현;전병희;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.195-198
    • /
    • 2002
  • 고농도오존이 발생되는 원인과 환경적 요인의 상호관계를 모델링하기 위해 신경회로 망과 같은 지능제어 기법들이 많이 적용되어 왔다 분석과 모델링을 위해 유전자 알고리즘과 같은 최적화 방법을 적용하기도 하지만, 고농도 오존이 발생되는 메커니즘이 매우 복잡하고, 비선형적이며, 패턴파악이 어렵기 때문에 고농도 오존의 예측 모델링에는 여전히 문제점이 있다 따라서 본 논문에서는 신뢰수준과 신뢰구간을 이용하여 초농도 오존을 예측할 수 있는 모델링 방법을 서술하였다 예측값의 신뢰수준의 평가는 예측에 대한 실측값을 구하여 신뢰구간내의 데이터의 개수를 파악함으로써 신뢰성을 평가할 수 있다. 또한 이 테스트는 우리가 가지고 있지 않은 데이터에 대한 유효성을 평가하는데 적용될 수 있다 그리고 본 논문에서는 GMDH(Group Method of data handling)의 전형적인 알고리즘에 바탕을 두고 있는 DPNN(Dynamic Polynomial Neural Network)를 이용하여 예측 모델을 구성하였다. DPNN은 데이터 해석이 용이하고 비선형적인 동적 시스템 예측에 유용하게 적용될 수 있는 장점을 가지고 있다.

Development of an Image Data Augmentation Apparatus to Evaluate CNN Model (CNN 모델 평가를 위한 이미지 데이터 증강 도구 개발)

  • Choi, Youngwon;Lee, Youngwoo;Chae, Heung-Seok
    • Journal of Software Engineering Society
    • /
    • v.29 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • As CNN model is applied to various domains such as image classification and object detection, the performance of CNN model which is used to safety critical system like autonomous vehicles should be reliable. To evaluate that CNN model can sustain the performance in various environments, we developed an image data augmentation apparatus which generates images that is changed background. If an image which contains object is entered into the apparatus, it extracts an object image from the entered image and generate s composed images by synthesizing the object image with collected background images. A s a method to evaluate a CNN model, the apparatus generate s new test images from original test images, and we evaluate the CNN model by the new test image. As a case study, we generated new test images from Pascal VOC2007 and evaluated a YOLOv3 model with the new images. As a result, it was detected that mAP of new test images is almost 0.11 lower than mAP of the original test images.

Estimation of Variability for Complex Modulus of Rubber Considering Temperature and Material Uncertainties (온도와 물성의 불확실성을 고려한 고무의 복소계수 변동성 평가)

  • Lee, Doo-Ho;Hwang, In-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.362-365
    • /
    • 2011
  • 본 논문에서는 통계적인 방법을 이용하여 점탄성 제진재인 합성고무의 물성에 대한 변동성을 평가하는 방법을 제안하고 측정데이터를 이용하여 합성고무에 대한 평가를 수행하였다. 고무 물성의 불확실성 인자로는 외기 온도의 변화와 실험 데이터의 오차 및 점탄성 제진모델의 오차를 고려하였다. 고무는 분수차 미분 모델로 표현되었고 온도의 영향은 비선형 이동계수모델을 도입하여 복소계수로 나타내어 동강성과 감쇠를 표현하였다. 이러한 물성모델을 바탕으로 고무에 대한 물성 실험데이터와 물성계수의 확률밀도함수 사이에 정의된 우도함수를 최대화하는 통계적 보정방법을 이용하여 물성모델의 물질계수들에 대한 변동성을 추정하였다.

  • PDF

Evaluation of Large Language Models' Korean-Text to SQL Capability (대형 언어 모델의 한국어 Text-to-SQL 변환 능력 평가)

  • Jooyoung Choi;Kyungkoo Min;Myoseop Sim;Haemin Jung;Minjun Park;Stanley Jungkyu Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.171-176
    • /
    • 2023
  • 최근 등장한 대규모 데이터로 사전학습된 자연어 생성 모델들은 대화 능력 및 코드 생성 태스크등에서 인상적인 성능을 보여주고 있어, 본 논문에서는 대형 언어 모델 (LLM)의 한국어 질문을 SQL 쿼리 (Text-to-SQL) 변환하는 성능을 평가하고자 한다. 먼저, 영어 Text-to-SQL 벤치마크 데이터셋을 활용하여 영어 질의문을 한국어 질의문으로 번역하여 한국어 Text-to-SQL 데이터셋으로 만들었다. 대형 생성형 모델 (GPT-3 davinci, GPT-3 turbo) 의 few-shot 세팅에서 성능 평가를 진행하며, fine-tuning 없이도 대형 언어 모델들의 경쟁력있는 한국어 Text-to-SQL 변환 성능을 확인한다. 또한, 에러 분석을 수행하여 한국어 문장을 데이터베이스 쿼리문으로 변환하는 과정에서 발생하는 다양한 문제와 프롬프트 기법을 활용한 가능한 해결책을 제시한다.

  • PDF

Dynamical Downscaling Technique through Hyper-Resoltion River Routing Modeling: A Case Study of Geum River, South Korea (초고해상도 지표 수문-하도 추적 모델을 통한 역학적 상세화 기술 개발: 금강 유역 사례 연구)

  • Kam, Jonghun;Kim, Byeong-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.111-111
    • /
    • 2022
  • 우리 사회가 수자원 관리 정책 결정에 사용 가능한 수문 이상 기상 정보를 제공하기 위해서는 초고해상도 지표면 수문 모델 개발이 필수적이다. 본 연구에서는 기존 저해상도 기후 모델들의 지표 수문학적인 과정들을 개선하기 위해 초고해상도 하도 추적 모델링 기술을 통해 역학적인 상세화가 시도되었다. 100-km 격자의 VIC 모델에서 재생산된 지표 배출량과 기저 배출량을 입력 데이터로 사용하여 다양한 공간 규모의 하도 추적 모델에서 사용하여 산정된 하천유량의 신뢰도를 평가하였다. 본 연구에서는 90미터 (3 arc second), 450 미터(15 arc second), 그리고 900 미터 (30 arc second) 격자 규모의 금강 유역 하천망 지도를 사용하여 과거 장기 하천 유량 데이터(1948년-2016년)를 재생산하였다. 본 연구에서는 금강 유역 내의 지점 관측 하천 유량 데이터와 재생산된 유량 데이터의 불확실성을 평가하였다. 본 연구의 주요 결과는 보다 고해상도의 하천망 지도를 하도 추적 모델에 사용 시 산정된 하천 유량 데이터의 불확실성이 감소하는 경향을 발견하였다. 끝으로, 초고해상도 지표 수문-하도 추적 모델을 통한 상세화 기술의 한계점과 개선 방안을 논의하였다. 본 연구는 기후변화로 인한 이상 기상 또는 기후의 위험성 증가에 효율적으로 선제 대응할 수 있는 핵심 수문 기후 모델링 기술을 개발에 중요한 기여할 것이다.

  • PDF

A Study on the Evaluation Methods for Assessing the Understanding of Korean Culture by Generative AI Models (생성형 AI 모델의 한국문화 이해 능력 평가 방법에 관한 연구)

  • Son Ki Jun;Kim Seung Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.421-428
    • /
    • 2024
  • Recently, services utilizing large-scale language models (LLMs) such as GPT-4 and LLaMA have been released, garnering significant attention. These models can respond fluently to various user queries, but their insufficient training on Korean data raises concerns about the potential to provide inaccurate information regarding Korean culture and language. In this study, we selected eight major publicly available models that have been trained on Korean data and evaluated their understanding of Korean culture using a dataset composed of five domains (Korean language comprehension and cultural aspects). The results showed that the commercial model HyperClovaX exhibited the best performance across all domains. Among the publicly available models, Bookworm demonstrated superior Korean language proficiency. Additionally, the LDCC-SOLAR model excelled in areas related to understanding Korean culture and language.

Performance estimation for Software Reliability Growth Model that Use Plot of Failure Data (고장 데이터의 플롯을 이용한 소프트웨어 신뢰도 성장 모델의 성능평가)

  • Jung, Hye-Jung;Yang, Hae-Sool;Park, In-Soo
    • The KIPS Transactions:PartD
    • /
    • v.10D no.5
    • /
    • pp.829-836
    • /
    • 2003
  • Software Reliability Growth Model that have been studied variously. But measurement of correct parameter of this model is not easy. Specially, estimation of correct model about failure data must be establish and estimation of parameter can consist exactly. To get correct testing, we calculate the normal score and describe the normal probability plot. Use the normal probability plot, we estimate the distribution for failure data. In this paper, we estimate the software reliability growth model for through the normal probability plot. In this research, we applies software reliability growth model through distribution characteristics of failure data. If we see plot, we determine the software reliability growth model, we can make sure superior in model's performance estimation.