• Title/Summary/Keyword: 데이터 구조 유사도

Search Result 548, Processing Time 0.029 seconds

Prediction Modeling on Effective Thermal Conductivity of Porous Insulation in Thermal Protection System (열방어구조의 다공성 단열재 유효 열전도율 예측 모델링)

  • Hwang, Kyung-Min;Kim, Yong-Ha;Kim, Myung-Jun;Lee, Hee-Soo;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.163-172
    • /
    • 2017
  • Porous insulation have been frequently used in a number of industries by minimizing thermal insulation space because of excellent performance of their thermal insulation. This paper devices an effective thermal conductivity prediction model. First of all, we perform literature survey on traditional effective thermal conductivity prediction models and compare each other model with heat transfer experimental results. Furthermore this research defines advanced effective thermal conductivity prediction models model based on heat transfer experimental results, the Zehner-Schlunder model. Finally we verify that the newly defined effective thermal conductivity prediction model has better performance prediction than other models. Finally, this research performs a transient heat transfer analysis of thermal protection system with a porous insulation using the finite element method and confirms validity of the effective thermal conductivity prediction model.

Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level (사고등급별 고속도로 교통사고 처리시간 예측모형 개발)

  • LEE, Soong-bong;HAN, Dong Hee;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2015
  • Nonrecurrent congestion of freeway was primarily caused by incident. The main cause of incident was known as a traffic accident. Therefore, accurate prediction of traffic incident clearance time is very important in accident management. Traffic accident data on freeway during year 2008 to year 2014 period were analyzed for this study. KNN(K-Nearest Neighbor) algorithm was hired for developing incident clearance time prediction model with the historical traffic accident data. Analysis result of accident data explains the level of accident significantly affect on the incident clearance time. For this reason, incident clearance time was categorized by accident level. Data were sorted by classification of traffic volume, number of lanes and time periods to consider traffic conditions and roadway geometry. Factors affecting incident clearance time were analyzed from the extracted data for identifying similar types of accident. Lastly, weight of detail factors was calculated in order to measure distance metric. Weight was calculated with applying standard method of normal distribution, then incident clearance time was predicted. Prediction result of model showed a lower prediction error(MAPE) than models of previous studies. The improve model developed in this study is expected to contribute to the efficient highway operation management when incident occurs.

Development of Actual Measurement Spacing Factor Using Spacing Data of Air Void in Concrete (콘크리트의 공극 간격 데이터를 활용한 실측간격계수 개발)

  • Lee, Jin-Bum;Jeon, Sung-Il;Kwon, Soo-Ahn;An, Ji-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.701-709
    • /
    • 2011
  • One of the typical evaluation models of concrete air-void system is spacing factor (SF), which was suggested by Power. Power Spacing Factor (PSF) has a disadvantage of the result being different from the actual case due to the existence of entrapped air, because PSF uses average single spacing factor. Therefore, the Actual Measurement Spacing Factor (AMSF) using actually measured data of air void spacing was developed from this study. PSF and AMSF were compared and evaluated in this study by using the image analysis test result of concrete mixture. This study results showed that PSF and AMSF are generally similar, but AMSF had a larger value when PSF was greater than $400{\mu}m$. The results indicated a possibility of PSF giving false measurement estimation where the measurement is less than the actual value in the concrete mixture containing less air. Also, in the result of PSF and AMSF analysis according to the existence of entrapped air, AMSF showed a larger value in the analysis without entrapped air. But PSF showed a smaller value in the analysis without entrapped air, which was different from the actual case. Because PSF used average single spacing factor, it tended to give a false result. The study results showed that AMSF gave more accurate analysis results.

The Investigation of Alluvium by Using Electrical Resistivity, Seismic Survey and GPR (전기비저항, 탄성파 그리고 GPR 탐사를 활용한 충적층 탐사)

  • Park, Chung-Hwa;Won, Kyung-Sik;Byun, Ji-Hwan;Min, Dae-Hong;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.9
    • /
    • pp.17-29
    • /
    • 2013
  • The geophysical methods have an advantage for investigating the wide area with low cost, and thus the application of these methods has been increased. The objective of this paper estimates the characteristics of alluvium through the geophysical methods including elastic wave, electrical resistivity and ground penetration radar. And the standard penetration test is also carried out for verifying the geophysical data with comparison. The sources of elastic wave method are divided into hammer and sissy and the electrical resistivity method is applied with different sizes, shapes and arrays of electrode for deciding the effective way. The center frequency is determined to be 270 MHz for considering the characteristics of soil. The results of ground penetration radar are also compared with those of standard penetration test. The high resolution shows when the source is a sissy in elastic wave method, however, the water level is not identified. In the electrical resistivity method, the non-polarizable electrode and schlumberger array show highly reliable data and the resolution of ground penetration radar is low. Thus, the results of this study are widely applied for determining the appropriate method when investigating the characteristics of alluvium.

Mixed Mobile Education System using SIFT Algorithm (SIFT 알고리즘을 이용한 혼합형 모바일 교육 시스템)

  • Hong, Kwang-Jin;Jung, Kee-Chul;Han, Eun-Jung;Yang, Jong-Yeol
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • Due to popularization of the wireless Internet and mobile devices the infrastructure of the ubiquitous environment, where users can get information whatever they want anytime and anywhere, is created. Therefore, a variety of fields including the education studies methods for efficiency of information transmission using on-line and off-line contents. In this paper, we propose the Mixed Mobile Education system(MME) that improves educational efficiency using on-line and off-line contents on mobile devices. Because it is hard to input new data and cannot use similar off-line contents in systems used additional tags, the proposed system does not use additional tags but recognizes of-line contents as we extract feature points in the input image using the mobile camera. We use the Scale Invariant Feature Transform(SIFT) algorithm to extract feature points which are not affected by noise, color distortion, size and rotation in the input image captured by the low resolution camera. And we use the client-server architecture for solving the limited storage size of the mobile devices and for easily registration and modification of data. Experimental results show that compared with previous work, the proposed system has some advantages and disadvantages and that the proposed system has good efficiency on various environments.

  • PDF

Emoticon by Emotions: The Development of an Emoticon Recommendation System Based on Consumer Emotions (Emoticon by Emotions: 소비자 감성 기반 이모티콘 추천 시스템 개발)

  • Kim, Keon-Woo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.227-252
    • /
    • 2018
  • The evolution of instant communication has mirrored the development of the Internet and messenger applications are among the most representative manifestations of instant communication technologies. In messenger applications, senders use emoticons to supplement the emotions conveyed in the text of their messages. The fact that communication via messenger applications is not face-to-face makes it difficult for senders to communicate their emotions to message recipients. Emoticons have long been used as symbols that indicate the moods of speakers. However, at present, emoticon-use is evolving into a means of conveying the psychological states of consumers who want to express individual characteristics and personality quirks while communicating their emotions to others. The fact that companies like KakaoTalk, Line, Apple, etc. have begun conducting emoticon business and sales of related content are expected to gradually increase testifies to the significance of this phenomenon. Nevertheless, despite the development of emoticons themselves and the growth of the emoticon market, no suitable emoticon recommendation system has yet been developed. Even KakaoTalk, a messenger application that commands more than 90% of domestic market share in South Korea, just grouped in to popularity, most recent, or brief category. This means consumers face the inconvenience of constantly scrolling around to locate the emoticons they want. The creation of an emoticon recommendation system would improve consumer convenience and satisfaction and increase the sales revenue of companies the sell emoticons. To recommend appropriate emoticons, it is necessary to quantify the emotions that the consumer sees and emotions. Such quantification will enable us to analyze the characteristics and emotions felt by consumers who used similar emoticons, which, in turn, will facilitate our emoticon recommendations for consumers. One way to quantify emoticons use is metadata-ization. Metadata-ization is a means of structuring or organizing unstructured and semi-structured data to extract meaning. By structuring unstructured emoticon data through metadata-ization, we can easily classify emoticons based on the emotions consumers want to express. To determine emoticons' precise emotions, we had to consider sub-detail expressions-not only the seven common emotional adjectives but also the metaphorical expressions that appear only in South Korean proved by previous studies related to emotion focusing on the emoticon's characteristics. We therefore collected the sub-detail expressions of emotion based on the "Shape", "Color" and "Adumbration". Moreover, to design a highly accurate recommendation system, we considered both emotion-technical indexes and emoticon-emotional indexes. We then identified 14 features of emoticon-technical indexes and selected 36 emotional adjectives. The 36 emotional adjectives consisted of contrasting adjectives, which we reduced to 18, and we measured the 18 emotional adjectives using 40 emoticon sets randomly selected from the top-ranked emoticons in the KakaoTalk shop. We surveyed 277 consumers in their mid-twenties who had experience purchasing emoticons; we recruited them online and asked them to evaluate five different emoticon sets. After data acquisition, we conducted a factor analysis of emoticon-emotional factors. We extracted four factors that we named "Comic", Softness", "Modernity" and "Transparency". We analyzed both the relationship between indexes and consumer attitude and the relationship between emoticon-technical indexes and emoticon-emotional factors. Through this process, we confirmed that the emoticon-technical indexes did not directly affect consumer attitudes but had a mediating effect on consumer attitudes through emoticon-emotional factors. The results of the analysis revealed the mechanism consumers use to evaluate emoticons; the results also showed that consumers' emoticon-technical indexes affected emoticon-emotional factors and that the emoticon-emotional factors affected consumer satisfaction. We therefore designed the emoticon recommendation system using only four emoticon-emotional factors; we created a recommendation method to calculate the Euclidean distance from each factors' emotion. In an attempt to increase the accuracy of the emoticon recommendation system, we compared the emotional patterns of selected emoticons with the recommended emoticons. The emotional patterns corresponded in principle. We verified the emoticon recommendation system by testing prediction accuracy; the predictions were 81.02% accurate in the first result, 76.64% accurate in the second, and 81.63% accurate in the third. This study developed a methodology that can be used in various fields academically and practically. We expect that the novel emoticon recommendation system we designed will increase emoticon sales for companies who conduct business in this domain and make consumer experiences more convenient. In addition, this study served as an important first step in the development of an intelligent emoticon recommendation system. The emotional factors proposed in this study could be collected in an emotional library that could serve as an emotion index for evaluation when new emoticons are released. Moreover, by combining the accumulated emotional library with company sales data, sales information, and consumer data, companies could develop hybrid recommendation systems that would bolster convenience for consumers and serve as intellectual assets that companies could strategically deploy.

A Study on Training Dataset Configuration for Deep Learning Based Image Matching of Multi-sensor VHR Satellite Images (다중센서 고해상도 위성영상의 딥러닝 기반 영상매칭을 위한 학습자료 구성에 관한 연구)

  • Kang, Wonbin;Jung, Minyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1505-1514
    • /
    • 2022
  • Image matching is a crucial preprocessing step for effective utilization of multi-temporal and multi-sensor very high resolution (VHR) satellite images. Deep learning (DL) method which is attracting widespread interest has proven to be an efficient approach to measure the similarity between image pairs in quick and accurate manner by extracting complex and detailed features from satellite images. However, Image matching of VHR satellite images remains challenging due to limitations of DL models in which the results are depending on the quantity and quality of training dataset, as well as the difficulty of creating training dataset with VHR satellite images. Therefore, this study examines the feasibility of DL-based method in matching pair extraction which is the most time-consuming process during image registration. This paper also aims to analyze factors that affect the accuracy based on the configuration of training dataset, when developing training dataset from existing multi-sensor VHR image database with bias for DL-based image matching. For this purpose, the generated training dataset were composed of correct matching pairs and incorrect matching pairs by assigning true and false labels to image pairs extracted using a grid-based Scale Invariant Feature Transform (SIFT) algorithm for a total of 12 multi-temporal and multi-sensor VHR images. The Siamese convolutional neural network (SCNN), proposed for matching pair extraction on constructed training dataset, proceeds with model learning and measures similarities by passing two images in parallel to the two identical convolutional neural network structures. The results from this study confirm that data acquired from VHR satellite image database can be used as DL training dataset and indicate the potential to improve efficiency of the matching process by appropriate configuration of multi-sensor images. DL-based image matching techniques using multi-sensor VHR satellite images are expected to replace existing manual-based feature extraction methods based on its stable performance, thus further develop into an integrated DL-based image registration framework.

Analysis of BWIM Signal Variation Due to Different Vehicle Travelling Conditions Using Field Measurement and Numerical Analysis (수치해석 및 현장계측을 통한 차량주행조건에 따른 BWIM 신호 변화 분석)

  • Lee, Jung-Whee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • Bridge Weigh-in-Motion(BWIM) system calculates a travelling vehicle's weight without interruption of traffic flow by analyzing the signals that are acquired from various sensors installed in the bridge. BWIM system or data accumulated from the BWIM system can be utilized to development of updated live load model for highway bridge design, fatigue load model for estimation of remaining life of bridges, etc. Field test with moving trucks including various load cases should be performed to guarantee successful development of precise BWIM system. In this paper, a numerical simulation technique is adopted as an alternative or supplement to the vehicle traveling test that is indispensible but expensive in time and budget. The constructed numerical model is validated by comparison experimentally measured signal with numerically generated signal. Also vehicles with various dynamic characteristics and travelling conditions are considered in numerical simulation to investigate the variation of bridge responses. Considered parameters in the numerical study are vehicle velocity, natural frequency of the vehicle, height of entry bump, and lateral position of the vehicle. By analyzing the results, it is revealed that the lateral position and natural frequency of the vehicle should be considered to increase precision of developing BWIM system. Since generation of vehicle travelling signal by the numerical simulation technique costs much less than field test, a large number of test parameters can effectively be considered to validate the developed BWIM algorithm. Also, when artificial neural network technique is applied, voluminous data set required for training and testing of the neural network can be prepared by numerical generation. Consequently, proposed numerical simulation technique may contribute to improve precision and performance of BWIM systems.

Inclusion Polymorphism과 UML 클래스 다이어그램 구조에 의거한 디자인패턴 해석

  • Lee, Rang-Hyeok;Lee, Hyeon-Woo;Go, Seok-Ha
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2007.05a
    • /
    • pp.55-68
    • /
    • 2007
  • 디자인 패턴은 새롭게 만들어 지는 것이 아니라 기존의 검증된 지식, 관용법, 원칙들을 체계화한 것이다. 다시 말하면 디자인 패턴은 특정한 문제를 해결하기 위한, 검증된 설계 방법에 이름을 붙인 것이다. 그러므로 적절한 디자인 패턴 사용은 1) 개발자들간의 원활한 의사소통에 도움을 주며, 2) 하급자가 고급기술을 쉽게 익힐 수 있도록 할 수 있다. 3) 또한 사용된 디자인이나 아키텍처를 재사용할 수 있도록 하고, 4) 만들어진 시스템의 유지 보수를 보다 쉽게 할 수 있는 등의 장점을 얻을 수 있다. 반면에 필요하지 않은 곳에 까지 디자인패턴을 사용하게 되면 소프트웨어를 복잡하고, 유지보수도 어렵게 만들 수 있다. 디자인 패턴의 분류는 수 많은 패턴을 비슷한 속성을 지닌 그룹들로 조직화 하는 것이다. 이는 개발자가 특정 문제에 맞는 디자인 패턴을 쉽게 선택 할 수 있도록 도와 줄 뿐만 아니라, 디자인 패턴의 주요특성을 빠르게 이해하고 간파 할 수 있게 한다. 그래서 Beck 이 디자인패턴을 소개한 이후 GoF, Buschmann, Grand, Antoy 등은 디자인 패턴을 단순히 열거를 통해 소개하지 않고, 각자의 기준에 따라 체계적으로 분류하여 패턴을 설명 하고 있다. 본 연구는 객체지향 설계의 근본 개념인 Polymorphism (Inclusion Polymorphism) 과 '객체 지향 소프트웨어 설계 원칙' 그리고 이 근본 원칙들이 UML 클래스 다이어그램에 나타나는 구조적 특정에 의거해 디자인 패 턴 해석을 수행 하였다. 본 연구의 목적은 1) 객체지향의 근본 원칙으로 표현 되는 패턴과 2) 설계자의 전문적 인 Art를 포함하고 있는 패턴으로 분류하는데 있다.3: 재미는 용이성을 통해 채택의도에 정의 영향을 미친다. 가설4: 유용성은 채택의도에 정의 영향을 미친다. 가설5: 용이성은 채택의도에 정의 영향을 미친다. 가설6: 용이성은 유용성에 정의 영향을 미친다. 본 연구의 대상은 자발적으로 이러닝을 채택할 수 있는 대학생을 대상으로 하였고, 설문 데이터 분석을 통한 실증연구를 수행하였다. 분석방법으로는 PLS 분석도구를 사용하였다. 분석결과 가설6을 제외하고는 모두 유용한 것으로 입증되었다.97)은 배움의 용이성, 기억의 용이성, 오류, 효율성, 만족성으로 분류하고 있고(Nielsen, 1997), Shneiderman(1998)는 효과성(직무시간, 배움의 시간), 효율성(기억의 지속시간, 오류), 만족도를 품질의 특성으로 분류하였다. 이와 같은 소프트웨어의 품질은 소프트웨어 계획, 개발, 성장과 쇠퇴의 모든 과정에 적용되며, 환경적 변화에 따라 사용자들의 정보욕구를 적절하게 반영하여 만족도를 높이 는 것이라고 요약할 수 있다. 그러나 현재까지 소프트웨어 품질 평가에 대한 연구들 은 보편적인 평가 항목들을 대상으로 측정하여 일반적인 품질기준을 제시하고 있고, 유사한 측정 내용들이 중복되어 있다. 이러한 경향은 산업별 특수성이 강한 소프트웨어에 대해서는 정확한 품질측정이 어려웠고, 품질측정에 대한 신뢰성을 떨어뜨리는 계기가 되었다. 이러한 한계를 극복하고자 나타난 방법론이 최종사용자들의 요구사항을 얼마나 적절하게 시스템에 반영했는지에 대한 사용성(Usability) 측정이다. 사용성에 대한 정의는 사용자들이 실질적으로 일하는 장소에서 직접 사용자들의 시스템 운용실태를 파악하여 문제점을 개선하는 것으로 요약할 수 있다. ISO9124-1

  • PDF

A Routing Optimization for Hybrid Routing Protocol in Wireless Ad Hoc Networks (Ad Hoc망에서 하이브리드 라우팅 프로토콜을 위한 경로 설정 최적화)

  • 추성은;김재남;강대욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10e
    • /
    • pp.274-276
    • /
    • 2002
  • Ad Hoc망은 전형적인 무선 네트워킹과는 다른 새로운 무선 네트워킹 파라다임으로써 기존 유선 망의 하부 구조에 의존하지 않고 이동 호스트들로만 구성된 네트워크이다. Ad Hoc망에서 통신을 하기 위해서는 출발지 노드에서 목적지 노드까지 데이터 전송을 위한 라우팅에 관한 문제이다. Ad Hoc망에서는 모든 단말기의 위치변화가 가능하기 때문에 경로설정에 어려움이 따른다. 노드간에 정보를 보내고자 할 때 노드가 인접한 상태가 아니면 정보를 직접 보낼 수 없고 여러 중간 노드들을 거쳐서 정보를 보내는 다중-홉 라우팅 방식을 사용해야 한다. 따라서 중간 노드들은 패킷 라우터의 역할을 해야하는데 무선 통신자체가 좁은 대역폭과 한정된 채널을 가지고 전송 범위가 제한되는 문제가 있다. 또한 노드자체의 이동성과 전력 소모 등으로 인한 이탈은 망 위상을 수시로 변화시키므로 노드간에 정보를 전송하는데 가장 좋은 경로는 수시로 변경될 수 있으므로 많은 어려움이 따르게 된다. 본 논문에서는 이러한 문제의 해결방안으로 경로유지 과정에서 Ad Hoc망 내의 노드들은 이동성의 특성으로 인해 현재 사용되는 경로 보다 더 짧고 효율적인 경로가 발생하고 중간 노드가 이동 될 때 새로운 경로로 갱신하여 솔기없는 최적의 경로를 유지할 수 있는 방법을 제안한다. 제안 방법은 ZRP의 IERP에서 감청모드를 통하여 사용중인 경로보다 최적의 경로를 감지하여 새로운 경로로 갱신하는 방법과 중간 노드가 이동하여 경로가 깨진 경우 부분적으로 경로를 복구하는 방법을 제시하여 항상 최적화된 경로를 유지함으로써 Ad Hoc망의 위상변화에 대한 적응성을 높일 수 있도록 한다.기반으로 하는 교육용 애플리케이션 개발의 용이성의 증대를 기대할 수 있으며, 모델의 재사용성을 보장할 수 있다. 제안한다.수행하였다. 분석에서는 제품의 효율성뿐만 아니라 보안성을 중요하게 생각하였으며, 앞으로 보안 관련 소프트웨어 개발에 사용될 수 있는 도구들이 가이드 라인에 대한 정보를 제공한다.용할 수 있는지 세부 설계를 제시한다.다.으로서 hemicellulose구조가 polyuronic acid의 형태인 것으로 사료된다. 추출획분의 구성단당은 여러 곡물연구의 보고와 유사하게 glucose, arabinose, xylose 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重

  • PDF