Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.225-227
/
1998
내용기반 영상검색 방법은 영상 데이터 베이스 검색 분야에서 최근 활발히 연구되고 있는데, 기존의 키워드기반 검색방법에 비해 보다 효율적인 데이터의 관리와 검색 방법을 제공한다. 그러나 데이터의 양이 증가하고 널리 이용됨에 따라 검색 과정에 사용자의 직관과 선호도를 반영한다면 보다 사용자의만족도가 높은 검색결과를 제공할 수 있을 것이다. 이러한 검색 시스템을 개발하기 위하여 이제까지 대화형 유전자 알고리즘을 이용한 감성기반 영상 검색 방법을 개발하여 왔다. 이것은 목적함수가 명시적으로 정의될 수 없는 경우 사용자의 판단을 적합도 함수로 사용하는 유전자 알고리즘이라 할 수 있다. 이 방법은 구체적으로 표현될 수 있는 영상 뿐 아니라 추상적인 감성을 이용하여 영상을 검색할 수 있도록 한다. 본 논문에서는 2000개의 영상 데이터를 대상으로 주관적 실험을 하여 그 유용성을 입증하고자 한다. 이 실험에 대한 통계적 분석 결과 감성적 영상 검색을 위한 유전자 알고리즘의 적용이 유용하다는 것을 알 수 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.1
/
pp.217-222
/
2014
In this paper, I propose an efficient data search system using data partitioning algorithm in Microsoft Excel. I propose searching algorithm to retrieve data quickly using VBA functioning in the Excel. This algorithm is to specify the sheet you are looking for. Once the sheet is specified, the algorithm searches the beginning and the end of the data in the sheet. The algorithm compares intermediate values and key words, from the starting position of the cell. In this way, it will search data to the end. This proposed algorithm was implemented and tested in the Excel system using VBA program. The experimental results showed that the performance was better than that of the conventional sequential search method.
Proceedings of the Korea Society for Simulation Conference
/
1999.10a
/
pp.254-262
/
1999
실시간 시뮬레이션에서 주어지는 다양한 종류의 불연속적인 파라미터 값을 가지는 데이터 테이블에서 실시간의 제약 하에서의 검색을 수행하기 위해서는 최적의 기법이 요구된다. 실시간의 제약 하에서 최적 기법의 기준이 되는 것은 보통의 알고리즘들과는 달리 평균 속도가 아니라 worst case에서의 속도가 된다. 검색 알고리즘 들은 iteration을 거치게 되므로 총 탐색에 걸리는 시간은 iteration의 수(logical speed)와 1 probe를 수행하는 데 걸리는 시간(실제 수행속도)의 곱으로 정의된다. 본 연구에서 총 탐색에 걸리는 시간을 이론적으로 계산한 검색 속도 기존의 수행한 수치비교시험의 결과와 대체로 일치하였고, 이분 검색법이 iteration의 수와 실제 수행시간 모두에 있어서 가장 우수하다. 한편, 검색하고자 하는 파라미터 값의 dynamics를 이용하여 주어진 데이터 테이블 내의 검색 영역을 축소시키는 dynamic-window 개념을 도입하여 검색 알고리즘의 속도를 향상시킬 수 있었다. 이 개념의 도입은 데이터 테이블의 형태에 민감한 보간 검색법(interpolation method)과 그 응용 기법들에 대해 탁월한 효과를 나타내었다. 결론적으로 일반적 데이터 테이블에 있어서는 이분 검색법이 logical speed와 실제 수행속도가 우수하고, dynamic-window 개념을 도입한 보간 검색법과 그 변형들은 logical speed가 탁월하게 향상된다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2013.10a
/
pp.671-674
/
2013
In this paper, we propose an efficient data search system using data partitioning algorithm in Microsoft Excel. We propose to retrieve the data quickly using VBA functioning Excel. This algorithm is to specify the sheet you are looking for. Once the sheet is specified, it searches the beginning and the end of the data in the sheet. It compares desired key words and intermediate values, starting from the position of the cell. In this way, it will search data to the end. This proposed algorithm was implemented and tested using actual VBA program. The experimental results showed that the performance was more excellent than that of the conventional search method.
Journal of the Institute of Convergence Signal Processing
/
v.4
no.2
/
pp.12-17
/
2003
This paper proposes content-based image retrieval system with fuzzy ART neural network algorithm. Retrieving large database of image data, the clustering is essential for fast retrieval. However, it is difficult to cluster huge image data pertinently, Because current retrieval methods using similarities have several problems like low accuracy of retrieving and long retrieval time, a solution is necessary to complement these problems. This paper presents a content-based image retrieval system with neural network in order to reinforce abovementioned problems. The retrieval system using fuzzy ART algorithm normalizes color and texture as feature values of input data between 0 and 1, and then it runs after clustering the input data. The implemental result with 300 image data shows retrieval accuracy of approximately 87%.
Proceedings of the Korean Information Science Society Conference
/
2010.06b
/
pp.88-91
/
2010
정보통신망 및 멀티미디어 기술의 발전으로 인해 정보의 형태는 단순한 텍스트 데이터에서 멀티미디어 데이터로 전환되고 있다. 멀티미디어 기술은 저장, 재생, 압축 등 관련 기술의 빠른 발전과 미디어의 사회, 문화적 역할이 계속 증가함에 따라 우리 사회 전반에 걸쳐 매우 광범위하게 사용되고 있으며, 이로 인해 동영상 검색등의 많은 검색을 요구 하고 있으나, 동영상 검색의 문제점은 생산되는 컨텐츠에서 동영상이 가지고 있는 비중은 계속해서 높아지지만 쌓아진 데이터를 검색하기엔 몇 가지 문제점이 있다. 첫 번째는 데이터의 중복성이고 두 번째는 제목, 내용 그리고 Keyword가 일치하지 않으며, 세 번째는 저자권 침해 등이 있다. 본 연구에서는 본 논문에서는 빠르게 변화되고 있는 정보화 시대에 맞게 동영상에서 음성과 얼굴영역을 검출하여, 검색 시 효율적이고 정확한 데이터의 검색이 이루어 질 수 있도록 검색 알고리즘을 제안하고 소개하며, 이중 두 번째의 문제점인 제목, 내용 그리고 Keyword의 불일치한 점에 두어 검색 시 영상의 이미지 검색과 음성을 통하여 keyword를 찾아 효율적이고 검색율의 높일 방법을 연구한다.
Kim, Youngmin;Lim, Seungyoung;Yu, Inguk;Park, Soyoon
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.3-8
/
2020
문서 검색은 오래 연구되어 온 자연어 처리의 중요한 분야 중 하나이다. 기존의 키워드 기반 검색 알고리즘 중 하나인 BM25는 성능에 명확한 한계가 있고, 딥러닝을 활용한 의미 기반 검색 알고리즘의 경우 문서가 압축되어 벡터로 변환되는 과정에서 정보의 손실이 생기는 문제가 있다. 이에 우리는 BERT Sparse라는 새로운 문서 검색 모델을 제안한다. BERT Sparse는 쿼리에 포함된 키워드를 활용하여 문서를 매칭하지만, 문서를 인코딩할 때는 BERT를 활용하여 쿼리의 문맥과 의미까지 반영할 수 있도록 고안하여, 기존 키워드 기반 검색 알고리즘의 한계를 극복하고자 하였다. BERT Sparse의 검색 속도는 BM25와 같은 키워드 기반 모델과 유사하여 실시간 서비스가 가능한 수준이며, 성능은 Recall@5 기준 93.87%로, BM25 알고리즘 검색 성능 대비 19% 뛰어나다. 최종적으로 BERT Sparse를 MRC 모델과 결합하여 open domain QA환경에서도 F1 score 81.87%를 얻었다.
본 고에서는 다양한 네트워크를 표현하는 그래프에서 삼각형을 검색하는 알고리즘과 그 응용을 다룬다. 삼각형은 그래프에서 서로가 연결된 세 정점의 집합을 의미한다. 삼각형 검색 문제는 폭 넓은 응용이 가능하기 때문에 데이터 마이닝, 네트워크 분석 등 다양한 분야에서 중요하고 기본적인 문제로서 인식되어왔다. 삼각형 검색 문제의 중요성이 널리 인식되면서 여러 알고리즘이 제안 되어 왔지만, 최근의 소셜 네트워크, 웹 등의 크기가 방대해 기존의 방법은 이러한 네트워크를 분석하기가 사실상 불가능하다. 최근 맵리듀스를 활용한 분산/병렬 처리를 통해 대용량 그래프에서 삼각형을 검색하는 알고리즘들이 여럿 제안되었다. 본 논문에서는 지금까지 제안된 알고리즘들을 설명하고 삼각형 검색의 응용에 대해서 소개한다.
Proceedings of the Korean Information Science Society Conference
/
1998.10b
/
pp.256-258
/
1998
대용량의 멀티미디어 자료를 기반으로 하는 내용-기반 멀티미디어 검색 시스템에서 k-최근접 탐색 질의는 사용자의 매우 중요한 검색 질의 중에 하나이다. 하지만, 방대한 양의 멀티미디어 데이터베이스를 기반으로하는 경우에는 적중 에러 없는 정확(exact) k-최근접 데이터 탐색을 위해서 상당히 많은 디스크 접근 횟수가 요구된다. 본 논문에서는 X-트리에서의 정확 k-최근접 탐색 질의를 개선하고, 또한 사용자의 빠른 검색 성능을 위해 다소의 적중 에러는 허용한다 하더라도 디스크 접근 횟수를 줄이는 근사(approximate) k-최근접 탐색 알고리즘을 제안한다.
Proceedings of the Korean Information Science Society Conference
/
2012.06a
/
pp.417-418
/
2012
우리는 유클리드 공간에서 그림 데이터의 평균화 분산을 이용한 비선형 변환을 이용하여, 그림 데이터에서 최인접검색(nearest neighbor search)을 빠르게 할 수 있는 알고리즘을 제시한다. 기존의 평균과 분산을 이용한 최인접검색 알고리즘은 고차원 그림 데이터를 그보다 낮은 차원의 유클리드 공간의 데이터로 변환하고, 낮은 차원에서의 비교를 통해 최인접검색의 해가 될 수 없는 그림 데이터를 빠르게 제외하는 방법을 사용한다. 우리는 기존의 방법이 균일하게 나누어지는 크기의 그림 데이터에서만 가능하던 기존방법에 대한 해결책을 이 논문에서 제시하여 일반적인 그림 데이터에서도 평균과 분산을 이용하는 최인접검색을 가능하게 한다.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.