현재까지 오류 데이터를 정제하는 기법은 여러 소스로부터 대량의 데이터를 통합하여 데이터베이스에 저장되어 있는 데이터의 품질을 관리함으로써 의미 있는 정보를 추출하기 위함이었다. 급변하는 비즈니스 환경과 무한경쟁 사회에서 지속적으로 생존하려면 환경 변화에 빠르게 대처해야 한다. 최근 시스템의 요구사항이 복잡해짐에 따라 대규모의 분산 시스템을 통합 구축하기 위한 서비스 기반 구조 (Service Oriented Architecture)로 확산되고 있으며, 여기에서도 각 서비스간의 데이터 정제기법을 통한 신뢰성 있는 데이터 교환이 필수적이다. 따라서 본 논문에서는 서비스들이 하나의 시스템으로 통합되는 과정에서 이벤트를 통해 서비스 간에 전송되는 XML데이터의 품질 관리를 수행하여, 이미 통합되어 저장된 데이터베이스 데이터의 오류를 탐지하여 정제하는 것이 아니라 상호 작용하는 서비스간의 데이터 정제에 초점을 두고 SOA를 기반으로 하는 오류 데이터 정제 서비스를 개발한다.
VoIP는 음성 및 데이터 통합 뿐만 아니라 차세대 네트웍 등의 기반이 되는 기술이며, 인터넷전화 / IP Telephony, 화상회의, 메신저 서비스 등 여러 서비스에 활용되고 있다. 이러한 VoIP 서비스 제공시에 가장 중요시되는 부분이 음성품질이며 이를 측정 및 관리하는 기술이 필수적으로 필요하다. 지금까지는 품질측정장비를 가지고 직접 측정하는 것이 전부였으나 본 연구는 IETF의 VoIP 표준 프로토콜인 MGCP중 파라미터 값을 이용하여 ITU-T의 음성품질 기준인 R factor(G.107)를 계산해 내고 중앙에서 모든 단말 및 사용자들의 실제 발생한 통화에 대한 음성품질을 관리할 수 있는 시스템을 설계 및 구현한다.
서비스 제공자와 사용자 간 이해관계를 유지하고, 제공되는 IT 서비스의 수준을 개선하기 위해서 서비스 수준관리가 필요하다. 그러나 무형의 IT 서비스는 정성적인 방법으로 평가될 수밖에 없는 한계가 존재 한다. 따라서 본 연구에서는 서비스 사용자가 동의할 수 있는 정량적 데이터를 바탕으로 서비스 품질을 향상시키는 개선 모형을 제시하였다. 이를 위해 기존 연구를 살펴보고 서비스 수준 관리 체계를 정립하였다. 본 논문에서 제시하고 있는 서비스 품질 개선 모형은 크게 4가지 방법으로 나누어 설명하였다. 첫 번째 우선관리지표를 선정하기 위해 AHP기법을 활용하였고, 두 번째 통계적 관리기법인 관리도를 이용하여 서비스 기대수준을 정의하는 방법을 제시하였다. 그리고 세 번째 측정되는 서비스 수준의 이상 유무 또는 이상 징후를 발견할 수 있는 관리도 사용방법을 설명하였다. 마지막 네 번째는 이상 원인을 해결한 후 서비스 기대수준을 재조정하는 방법을 설명하였다. 향후 연구 결과를 실제 조직에 적용시켜 검증함으로써 완성도를 높여 나감은 물론, 원인 분석 및 해결 방안에 대한 구체적인 대안을 제시하는 연구가 수행되어야 할 것이다.
본 연구는 공급사슬관리하에서 부품 및 원재료 공급기업에서 고객기업인 제조기업의 주문 사항과 공급기업내 생산관련 제약사항을 동시에 고려하여 최적의 생산 체제를 구축할 수 있는 방법론을 제시한다. 본 연구에서는 수주 및 비용 데이터베이스로부터 주문 및 생산관련 데이터를 SOM 신경망분석을 통해 그룹핑하고 고객기업군별로 특성분석을 통해 이에 맞는 생산체제를 구축할 것을 제안하였다. 공급사슬관리 환경하에서 원재료/부품 공급기업이 고객기업의 주문 요구와 내부 생산상의 제약을 동시에 고려함으로써 SCM 적용 성과를 극대화할 수 있다는 점에서 본 연구는 의미가 있다.
강우 데이터는 수문기상, 환경, 농업, 자연재해, 그리고 수자원 시스템 분야에서 가장 필수적인 기본 요소 중 하나이다. 또한 강우 데이터는 수문학적 분석에서 활용되는 필수 입력 자료 중 하나로 관측 데이터의 품질에 따라 수문 모형을 이용한 모의 결과물의 정확도가 결정된다고 할 수 있다. 따라서, 강우 관측소별로 강우 데이터의 품질을 어떻게 관리하느냐에 따라 수문 모형의 활용 범위 및 수자원 관리의 효율성이 결정될 수 있다. 강우의 시공간적 변동성은 수 많은 인자들과 직간접적으로 연계되어 있기 때문에 미계측 강우 자료에 대해 직접 관측이 아닌 수치 모형을 이용하여 강우의 발생과 강우량을 산정하는 것은 매우 복잡한 과제 중 하나이다. 현재 국내에서 운용되고 있는 강우 관측소의 경우에도 미계측 된 강우 데이터가 존재함으로써 강우 데이터의 활용에 제한이 생기는 경우가 있다. 따라서, 이러한 미계측 데이터의 추정 및 보완은 보다 효과적인 수재해 방지, 수자원 관리를 위한 필수 과제 중 하나이다. 일반적으로, 미계측 강우를 산정하기 위해서 Kriging, Thiessen, 등우선법, 그리고 역거리 관측법 등 다양한 수문학적 방법들이 적용되고 있다. 이러한 방법들은 산악효과나 강우 관측소의 분포 상태 등을 고려하지 못하기 때문에 측정하는 지역에 따라 강우 추정 오차가 커질 수 있다는 한계가 있다. 최근에는 데이터 관측 시스템과 빅데이터 기술의 발전과 활용 가능한 데이터의 양이 증가함에 따라 머신러닝을 활용한 사례가 증가하고 있다. 머신러닝은 데이터 사이의 관계를 기반으로 분류, 회귀, 그리고 예측 문제에 주로 사용되는 기법 중 하나이다. 따라서, 본 연구에서는 광주광역시 지역에 위치한 주요 강우 관측 지점들을 대상으로 미계측 된 시강우 데이터를 추정 및 복원하고자 한다. 여기서 데이터 추정 기술이란 미계측 강우의 발생 유무 및 강우량을 추정할 수 있는 기술을 의미한다. 이를 위해 대표적인 머신러닝 알고리즘인 인공신경망(Artificial Neural Network) 및 랜덤포레스트(Random Forest)를 적용하였다.
데이터 품질관리 관점에서 볼 때, 데이터의 품질은 품질정책, 품질조직, 업무프로세스, 업무규칙 등 여러 요인에 의해 영향을 받는다. 이중에서도 업무규칙은 실제 데이터를 조작하는 행위의 지침이 되는 것으로써 데이터 품질에 직접적인 영향을 미친다. 여러 기관의 데이터베이스를 통합하여 단일의 데이터베이스를 구축하는 경우에는 더 신중하게 업무규칙을 수립할 필요가 있다. 분산된 데이터베이스 내에 있는 데이터를 단일의 데이터베이스로 통합한다는 것은 단순히 데이터의 통합만을 의미하는 것이 아니라 상이한 스키마, 코드 체계, 데이터 표준 등을 사전에 고려해야 함을 의미한다. 이런 요소들을 고려하더라도 데이터 자체는 형식, 단위, 표현 등에 따라서 다양한 모습을 가진다. 결국 데이터베이스의 구조적인 문제와 데이터 자체의 의미적인 문제가 데이터베이스 통합과 통합된 데이터베이스 내 데이터의 품질 제고를 위한 선결 과제라 할 수 있다. 이러한 문제들을 해결하기 위해서는 먼저 통합 시 통합 모델의 설계가 필요하고, 통합된 데이터베이스의 데이터에 대한 정제가 필요하다. 범부처적으로 분산되어 있는 국가R&D정보를 수집하여 서비스하는 국가과학기술종합정보서비스(NTIS)도 여러 기관에 존재하는 데이터베이스를 연계 통합하여 단일의 데이터베이스를 구축하였다. NTIS의 사례를 통해 체계적인 통합 모델 수립과 정제에 의해 통합된 데이터베이스의 데이터는 그렇지 않은 데이터보다 정확도 측면에서 품질이 제고되었음이 입증되었다.
본 연구의 목적은 과학기술분야 연구기관에서 운영되는 기관 연구데이터 리포지터리 운영 현황을 파악하고 활성화 방안을 제시하는 것에 있다. 이를 위해 문헌 연구와 사례 분석, 국내외 기관 리포지터리 담당자와의 인터뷰를 수행하였으며, 리포지터리 규정 및 정책 수립, 연구데이터 공유 인식 개선, 연구데이터 품질 관리 강화를 골자로 하는 기관 연구데이터 리포지터리 운영 활성화 방안을 제안하였다. 첫째, 리포지터리 규정 및 정책 수립 측면에서는 현재 연구데이터와 관련한 규정인 국가연구개발정보 처리기준의 지위 향상과 리포지터리 근거 규정의 명시가 필요하다고 보았다. 둘째, 연구데이터 공유 인식 개선 측면에서 전반적인 연구데이터 교육과 우수 사례 발굴의 필요성을 제안하였다. 셋째, 연구데이터 품질 관리 강화 측면에서 연구자-담당자-위원회의 상호작용과 표준화 작업, 장기 보존을 위한 준비의 필요성을 제안하였다.
인공지능 기술의 가장 큰 근간은 학습 가능한 데이터이다. 최근 정부나 사기업에서 수집·생산하는 데이터의 종류와 양이 기하급수적으로 증가하고 있지만, 실제 기계학습에 활용 가능한 데이터의 확보로는 아직까지 이어지지 않고 있다. 이에 본 연구에서는 기계학습에 실제 활용 가능한 데이터가 갖추어야 할 조건에 대해 논의하고, 실제 사례연구를 통해 데이터 품질을 저하시키는 요인을 파악한다. 이를 위해 공공빅데이터를 활용해 예측 모델을 개발한 대표사례를 선정, 공공데이터포털로부터 실제 문제 해결을 위한 데이터를 수집 후 데이터 품질을 확인하였다. 이를 통해 유효한 데이터 선별 기준을 적용하고 후처리한 결과와의 차이를 보인다. 본 연구의 궁극적인 목적은 인공지능의 핵심인 기계학습 기술 개발에 앞서 가장 근본적으로 선결되어야 할 데이터 품질을 관리하고 유효한 데이터를 축적하기 위한 기반 마련에 있다.
재해의 발생 빈도 증가와 불규칙성, 대형화 추세에 따른 SOC 시설물 피해가 증가함에 따라 유관 기관의 재난/재해 정보 수집은 지속적으로 이루어지고 있다. 그러나 각 기관별로 자료가 분산 관리됨에 따라 선제적 재해대응 체계는 갖추어지지 못하고 있는 실정이다. 이에, 예방적 유지관리체계 구현을 위한 분산정보 공유형 재해대응 인벤토리를 구축하고자 한다. 본 인벤토리는 3차원 공간정보를 기반으로 분산 관리되고 있는 재난/재해 관련 정보를 수집하고 이렇게 수집된 데이터들의 통합적 관리를 위해 데이터 표준화를 거쳐 선제적 재해 대응의 원천 데이터로 활용될 수 있다. 본 연구에서는 인벤토리 관리/연계 모듈의 설계 방안을 마련하고자 국내외 인벤토리 관련 시스템 현황조사를 진행하고 관리 및 연계 대상 데이터의 항목을 선정하고 내용을 분류하였다. 또한, 시스템 요구사항을 수집하고 정의하고 관리/연계 모듈의 세부기능 정의를 하였다. 뿐만아니라, 프로토타입 개발을 위해 서비스 제공 형태와 데이터 제공 방식을 결정하였다. 본 연구에서 개발하고 있는 프로토타입은 Web Service 기반의 REST 방식으로 데이터를 제공할 것이며, 3차원 공간 정보를 기반으로 하고 있다. 본 연구에서는 프로토타입 개발을 위해 기본 주재도를 제작하고 연구 지역의 시설물 정보를 구축하였다. 분산정보 공유형 재해대응 인벤토리 시스템은 분산 관리되고 있는 재난/재해 정보들을 자료 송/수신 모듈을 통하여 수집하고 데이터 필터링 모듈에서 수집된 자료의 표준화와 품질측정을 진행하여 데이터의 신뢰도를 향상 시킬 것이다. 또한, 데이터 관리 모듈을 이용하여 공간정보 데이터를 검증하고 최적화 관리를 할 수 있도록 하며, 시스템 관리 모듈에서 유관기관에서 유입되는 자료들을 관리하고자 한다. 이렇게 구축된 인벤토리 시스템은 선제적 재해대응 의사결정의 원천 데이터를 제공하고 SOC 시설물의 유지관리에 활용될 수 있을 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.