본 연구는 대량의 상권 데이터를 바탕으로 머신 러닝과 딥러닝 분석을 이용하여 최적의 상권 입지를 추천하는 시스템 개발을 목표로 한다. 자영업자들의 오프라인 창업에 있어 개개인의 매장 정보에 기반한 입지 조건 판단은 앞으로의 매출에 중요한 시작점이다. 따라서 상권 정보를 기반으로 미래 매출을 예측하여 최적의 상권 입지를 추천하는 기술이 필요하다. 이를 위해 기존에 선행된 다수의 회귀 기법과 더불어 강하게 편향된 데이터를 레이블링 하여 다중 분류 기법으로도 문제를 접근한다. 최종적으로 딥러닝 모델과 합성하여 더 높은 성능을 이끌어내고 이로부터 편향 데이터 처리 방법과 딥러닝 모델과의 앙상블 중요성에 대해 논의하고자 한다.
최근의 지형시각화 연구에서는 대용량 데이터를 실시간에 처리하기 위하여 여러 가지 상세단계조절 기법을 사용한다. 하지만 상세단계조절을 통한 메쉬 간략화 과정에서 발생하는 기하오차 때문에 연속된 프레임에서 기하파핑 현상이 열어난다. 본 논문에서는 거칠기맵과 편향맵을 이용하여 기하파핑 현상을 효과적으로 줄일 수 있는 방법을 제안한다. 거칠기맵과 편향맵은 지형 메쉬를 구성하는 정점이 적은 기하오차를 가지는 위치로 이동 시켜주는 역할을 한다. 거칠기맵과 편향맵은 텍스쳐로 저장되기 때문에 GPU에서 사용하기 적합하다. 또한 편향맵을 이용한 정점 이동 연산은 GPU에서 수행되므로 병렬처리를 통한 빠른 시각화가 가능하다.
일반적으로, 교사 학습 알고리즘이 적절히 학습되기 위해서는 레이블의 편향이 없는 충분한 양의 학습데이터가 필요하다. 그러나 영작문 자동채점 시스템 개발을 위한 충분하고 편향되지 않은 학습데이터를 수집하는 것은 어려운 일이다. 또한 영어 작문 평가의 경우, 전체적인 답안 수준에 대한 다면적인 평가가 이루어진다. 적고 편향되기 쉬운 학습데이터와 이를 이용한 여러 평가영역에 대한 학습모델을 생성해야하기 때문에, 이를 위한 적절한 기계학습 알고리즘을 결정하기 어렵다. 본 논문에서는 이러한 문제를 앙상블학습을 통해 완화할 수 있음을 실험에 통해 보이고자 한다. 실제 중, 고등학교 학생들을 대상으로 시행된 단문형 영작문 채점 결과를 학습데이터 개수와 편향성을 조절하여 실험하였다. 학습데이터의 개수 변화와 편향성 변화의 실험 결과, 에이다부스트 알고리즘을 적용한 결과를 투표로 결합한 앙상블 기법이 다른 알고리즘들 보다 전반적으로 더 나은 성능을 나타냄을 실험을 통해 나타내었다.
오늘날의 검색 포털은 뉴스의 창구로서는 가장 큰 비율을 차지하지만, 중립성에 대해서는 의문이 제기되고 있다. 이는 포털 뉴스가 편향된 정보의 소비를 유도할 수 있기 때문이다. 본 논문은 뉴스 기사의 정치적 편향도를 딥러닝을 이용하여 측정하는 방법에 대하여 소개한다. 이는 기사를 비판적으로 바라보는 시각을 뉴스 독자에게 제공할 것이다. 구체적으로, 국회 회의록에서 추출한 키워드에 편향도를 부여하고, 이를 기반으로 기사의 편향도를 분석하여 머신러닝용 데이터를 구축하였다. 최종적으로 순환 신경망과 합성곱 신경망을 융합한 딥러닝을 통해 기사의 편향도를 계산하는 것을 목표로 하였다. 학습한 모델의 정확도를 분석한 결과 문장별 편향의 좌/우편향 판정은 95.6%의 정확도를 보였으나, 신문기사 전체에서는 46.0%의 정확도를 보였다. 이는 기존의 여러 편향성 연구와 다르게 특정 주제에 한정되지 않고 기사의 보수-진보 편향성을 분석할 수 있도록 한다.
본 연구에서는 MANET(Mobile Ad hoc NETwork) 환경에서 스카이라인 질의를 하기 위한 효과적인 필터링 방법을 제안한다. 기존의 MANET 환경에서의 스카이라인 질의 처리는 데이터가 균등하게 분포한다고 가정한다. 이러한 가정하에서 제한된 배터리 용량을 위한 에너지 소모 최소화에 중점을 두어 스카이라인 질의를 처리하는 방법을 연구한다. 그러나 실제 환경에서는 특정한 영역에 데이터가 편향되는 분포를 가진다. 배터리의 에너지 소비를 감소하기 위해서 본 논문에서는 데이터 분포를 고려한 새로운 필터링 방법을 제안한다. 그리고 기존의 필터링 방법과 본 논문에서 제안하는 필터링 방법을 비교 실험한다. 실험 결과는 본 논문에서 제안하는 방법이 기존의 방법보다 통신 오버헤드와 실행시간이 감소하는 것을 보여준다.
본 논문의 목적은 국내 이동통신시장에서 발생가능한 대표적인 인식편향(cognitive bias) 중 하나인 단위편향(unit bias) 현상의 발생 여부를 실증적으로 분석하고, 단위편향 발생을 최소화하기 위한 바람직한 요금제 개선방안을 제시하는 것이다. 분석 결과 이용자들은 정액요금제하에서 단위편향적 소비행태 발생에 따라 자신의 최적소비량보다 많은 통화량 혹은 데이터량을 사용함으로써 자신의 효용극대화를 위한 최적 통신비 지출보다 많은 통신비를 지출할 가능성이 높은 것으로 나타났다. 따라서 정액요금제의 요금구간을 보다 세분화함으로써 소비자들이 단위편향 발생에 따른 비합리적 소비를 최소화하고 자신의 효용함수에 따라 최적 소비량을 이용토록 마련하여 가계통신비 절감은 물론 소비자 후생을 극대화할 수 있도록 유도하는 것이 가능할 것으로 기대된다.
KDB-트리는 다차원 데이터를 검색하기 위한 전통적인 색인 기법이다. 많은 연구에서 낮은 저장 공간 사용과 검색 성능이 KDB-트리군의 두 병목현상이라고 언급되고 있다. 데이터 삽입 순서와 데이터의 편향으로 인한 불필요한 공간 분할이 그 원인이다. 본 논문에서는 편향 데이터를 효율적으로 처리하고, 검색 성능을 향상시키기 위한 새로운 색인 구조인 $KDB_{CS}^+$-트리를 제안한다. $KDB_{CS}^+$-트리는 분할 정보를 비트벡터로 표현하는 압축 기법과 노드의 그룹화를 통한 포인터 제거 기법을 활용하여 중간 노드의 팬-아웃을 증가시키고, 중간 노드의 엔트리를 계층적으로 표현함으로써 중간 노드의 사용율을 높인다.
본 연구는 대학생의 선호직업유형이 진로결정과정에서 확증편향과 취업불안에 미치는 영향을 분석하는 양적연구이다. 본 연구 설문조사는 서울과 수도권에 소재한 대학교 재학생을 대상으로 2017. 7. 10~8. 8까지 5주 동안 500부의 설문지를 배포하였다. 이 중 유효한 482명을 연구대상으로 데이터 코딩(data coding)과 데이터 크리닝(data cleaning)을 거쳐, SPSS 18.0 통계와 AMOS 18.0 프로그램으로 분석하였다. 본 연구의 주요결과는 확증편향에 대한 선호직업유형 중 사업형은 정(+)적 직접영향력(${\beta}=.374$), 자유형은 정(+)적 직접영향력(${\beta}=.326$), 직장형은 부(-)적 직접 영향력(${\beta}=-.274$)을 보였다. 취업불안은 직장형만 더 가중되며, 확증편향은 사업형과 자유형이 노력이나 성취동기에서 원인을 찾는 반면, 직장형은 사회적 환경 및 구조적 문제로 인식한다는 결과를 보여주었다. 결국, 확증편향과 취업불안은 정도의 차이가 있을 뿐 모든 사람이 가지고 있으며 여기에 개인별 선호 직업유형이 영향을 미친다는 것이다. 대학생들의 선호직업유형이 취업준비과정에서 갖는 확증편향과 불안감을 이해하고 취업불안감소에 도움이 될 수 있음이 검증되었으며, 진로지도에 유용하게 활용될 것으로 기대된다.
표본조사에서 가중치는 설계 단계와 분석 단계에서 만들어지고 부여될 수 있다. 설계 단계의 가중치는 추출확률이나 응답률 등과 같은 표본 데이터 획득 지표에 관련되어 있고 분석 단계의 가중치는 모집단 수치나 다른 보조 변수정보 등과 같은 외적인 정보와 관련되어 있다. 그리고 최종가중치는 설계 단계의 가중치와 분석 단계의 가중치의 곱으로 만들어진다. 이 논문에서는 분석 단계에서 부여되는 가중치에 초점을 맞추어 가중평균으로 모평균을 추정할 때 가중평균에 포함된 가중치가 모평균 추론에 미치는 영향을 고찰하였다. 유한모집단에서 각 조사단위에 조사변수와 가중치가 쌍으로 있고 표본추출확률이 균등한 경우를 가정하였다. 이러한 조건에서 가중평균의 편향과 평균제곱오차를 구하여 가중평균은 모평균의 편향 추정량임을 보였고, 편향의 방향과 크기는 조사변수와 가중치의 상관관계로 설명할 수 있음을 보였다. 즉, 만일 가중치와 조사변수가 양의 상관관계가 있으면 가중평균은 모평균을 과대 추정하게 되고, 만일 음의 상관관계가 있으면 모평균을 과소 추정하게 된다. 그리고 두 변수의 상관계수가 크면 편향은 증가한다. 가중평균에 대한 이론적인 수식 유도와 함께 편향의 크기와 평균제곱오차의 크기를 수치적으로 검토하기 위하여 모의실험을 실시하였다. 모의실험에서는 상관계수가 -0.2과 0.6사이에 있는 9개의 가중치를 생성하였고, 표본수는 100부터 400까지 고려하여 편향의 크기와 평균제곱오차의 크기를 수치적으로 구하였다. 하나의 결과로써 상관계수가 0.55이고 표본수가 400인 경우에 가중평균의 편향의 제곱이 평균제곱오차에서 차지하는 비율은 무려 82%에 이르는 것으로 나타났는데, 이는 가중평균의 편향이 어떤 경우에는 매우 심각할 수도 있음을 보여주는 것이다.
지금까지 제안된 분산 고차원 색인의 대부분은 균일한 분포를 가지는 데이터 집합에서 좋은 검색 성능을 나타내나, 편향되거나 클러스터를 이루는 데이터의 집합에서는 그 성능이 크게 감소된다. 본 논문은 강하게 클러스터를 이루거나 편향된 분포를 가지는 데이터 집합에 대한 분산 벡터 근사 트리의 k-최근접 검색 성능을 향상시키는 방법을 제안한다. 기본 아이디어는 전체 데이터를 클러스터링하는 상위 트리의 말단 노드가 담당하는 데이터 공간의 크기를 계산하고, 그 공간 상의 특징 벡터를 근사하는 데 사용되는 비트의 수를 달리하여 벡터 근사의 식별 능력을 보장하는 것이다. 즉, 고밀도 클러스터에는 더 많은 수의 비트를 할당하는 것이다. 우리는 합성 데이터와 실세계 데이터를 가지고 분산 hybrid spill-tree와 기존 분산 벡터 근사 트리와의 성능 비교 실험을 수행하였다. 실험 결과는 확장된 분산 벡터 근사 트리의 검색 성능이 균일하지 않은 분포의 데이터 집합에서 크게 향상되었음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.