데이터 스트림 환경에서 연속 질의를 처리하기 위한 데이터 스트림 처리 시스템이 개발되었다. 데이터 스트림 처리 시스템에서 질의를 처리하는 태스크에 과도한 데이터가 발생할 경우 일반적으로 데이터 스트림을 선별적으로 버리는 load shedding 방법을 이용하지만 이러한 방법은 처리 결과의 정확도가 저하될 수 있다. 따라서, 본 논문은 이를 해결하는 방법으로 분산 데이터 스트림 처리 시스템에서 데이터 스트림 분할을 통한 데이터 스트림 연속 처리 태스크의 병렬 처리 방법을 제시한다. 이를 위해 분산 데이터 스트림을 처리하기 위한 기준을 제시 및 데이터 분할 방법에 대해서 언급한다.
스트림 데이터를 생성하는 응용의 증가로 스트림 데이터 처리에 대한 연구가 활발히 진행되고 있다. 이러한 응용의 예로 센서네트워크, 모니터링, Selective dissemination of information(SDI)등이 있다. 특히 SDI와 같은 웹 환경의 응용은 XML을 기반으로 스트림 데이터 처리에 대한 연구를 진행하고 있다. XML은 웹상의 데이터 교환의 표준으로 웹 응용의 증가로 인해 스트림 데이터 처리 분야에서도 XML을 사용하는 스트림 데이터 처리 시스템에 대한 연구가 많이 진행되고 있는 실정이다. 하지만 XML을 기반으로 하는 기존의 시스템들은 정적인 질의계획을 사용하여 스트림 데이터를 처리하기 때문에 동적으로 변하는 스트림 데이터에 적응력있게 대처할 수 있다. 이와 달리 관계 데이터 모델을 사용하는 스트림 데이터 처리 시스템은 동적인 질의 계획과 질의 처리 연산자의 라우팅(스케쥴링) 기법을 사용하여 적응력있는 질의처리를 지원한다. 본 논문에서는 관계 데이터 모델을 사용하는 시스템의 적응력있는 질의처리 모델을 XML을 기반으로 하는 시스템에 적용하는 기법들에 대하여 설명한다. 그리고 XML을 기반으로 하는 기존의 대표적인 시스템인 YFilter[7]와 본 논문의 제안하는 시스템과의 질의처리 성능을 비교 평가한다.
최근에는 네트워크가 진화하고 데이터 처리기술이 발달하여 디지털 데이터가 활성화되면서, 기존 데이터 처리 방식으로 감당하기 힘든 규모의 데이터인 빅데이터가 매일 생산되고 있다. 이러한 대규모 데이터는 분석 및 관리를 하는데 어렵고 시간이 많이 걸리지만, 분석을 함으로써 새롭고 유용한 많은 정보를 얻을 수가 있다. 이처럼 빅데이터 분석을 통해 얻어지는 정보가 기존 분석 방식에서 얻어지는 정보와 다른 새로운 정보이기에 많은 산업분야에서 빅데이터 처리에 대한 관심이 많아지고 있다. 이러한 흐름에 따라, 의료분야에서도 빅데이터를 효율적으로 처리 및 관리하기 위한 시스템 구축을 시도하고 있다. 즉, 기존에 정형화 되어 있는 의료 데이터를 분석하여 얻는 정보에 비정형화 되어있는 의료 데이터를 추가하여 새로운 정보를 도출하려 시도하고 있다. 하지만, 여러 병원에서 서로 호환이 가능한 의료 빅데이터 처리 및 관리 시스템을 사용하기 위해서는 명확한 의료 빅데이터 처리 및 관리에 대한 요구사항과 기능정의가 필요하다. 이에 본 논문에서는 의료 빅데이터 처리 및 관리를 위한 요구사항과 기능정의를 하고 의료 빅데이터 처리 및 관리 시스템 구조를 구축하고자한다.
최근 디지털 정보량의 기하급수적인 증가에 따라 대규모 데이터인 빅데이터가 등장하였다. 빅데이터는 데이터가 실시간으로 매우 빠르게 생성되며 다양한 형태의 데이터를 가지며 이 데이터를 수집, 처리, 분석을 통해 새로운 지식을 창출한다. 그러나 기존의 ETL(Exact/Transform/Load) 연구에서 이러한 빅데이터를 처리 하는데 성능 저하가 발생되고 있으며 비정형 데이터를 관리할 수 없다. 따라서 본 논문에서는 기존의 ETL 처리의 한계를 극복하기 위해서 하둡을 이용하여 ETL 상에서 처리 속도를 높이고 비정형 데이터를 처리할 수 있는 빅데이터 처리 시스템을 제안하고자 한다.
과거에 비해 비약적으로 생산되는 공간 데이터에 대한 처리를 위한 공간 연산은 빠른 처리 응답성을 요구하는 경우가 많다. 그래서 최근 하둡(Hadoop)과 같은 빅데이터 처리 시스템을 이용하여 처리하고자 하는 시도가 많다. 한편, 공간 조인은 데이터 분할(Partitioning)과 공간 색인의 이용 여부, 여과 단계와 정제 단계를 거치는 등 그 복잡도가 강한 공간 연산이다. 그래서 빅데이터 처리 시스템을 이용한 공간 조인의 처리 방식은 매우 다양하다. 그러나 지금까지 이러한 공간 조인의 처리 방식에 다른 리소스 활용에 대한 비교는 거의 없다. 이 논문에서는 다양한 공간 연산의 수행 방법에 따른 빅데이터 시스템 클러스터에서 데이터 전송 방식을 고찰하고 데이터 전송에 따른 네트워크 리소스의 효율적인 사용 방안을 제안하고자 한다. 구체적으로 단일할당과 다중할당 색인 기법의 비교, 파티셔닝 방법의 비교, 맵리듀스 시스템의 태스크 할당 방법에 따른 비교를 통해 다양한 연산 유형에 따른 공간 조인의 처리 방안 선정에 고려 요소를 제시하고자 한다.
본 고에서는 과학 분야에서의 대용량 데이터 처리를 위한 기술인 사이언스 빅데이터의 처리 기술 동향에 대하여 기술한다. 서론에서 사이언스 빅데이터의 정의 및 필요성을 다루고, 본론에서는 데이터 중심 과학 패러다임의 등장과 그로 인한 사이언스 빅데이터 요구사항, 사이언스 빅데이터 소스 수집 및 정제, 저장 및 관리, 처리, 분석 등으로 이루어지는 사이언스 빅데이터 처리 기법에 대하여 기술한다. 또한 현재 다양한 기관에서 연구하고 있는 사이언스 빅데이터 플랫폼, 맵리듀스 등을 이용한 워크플로우 제어 기반의 사이언스 빅데이터 처리 기법을 예시로 소개한다.
본 논문에서는 블록체인 기반 DID기술을 이용하여 원격교육에서 발생하는 학습데이터를 효율적으로 관리하기 위한 방법으로, 학습데이터 가중치를 고려한 DID 메타데이터관리방법을 제안하였다. 메타데이터의 식별자에 대하여 특정위치로 데이터 가중치를 검색하도록 하고 해당 가중치에 따라 처리방법을 다양화 할 수 있다. 본문에서는 블록체인의 Zero Knowledge Proof 방식 처리에 차별화를 두어 메타데이터를 처리하였으며 데이터 처리속도 및 데이터관리에 효율성높일 수 있다.
유비쿼터스 컴퓨팅 환경으로 발전하면서 문자열 위주의 획일적 형태에서 음성, 이미지 등 다양한 형태의 데이터들을 처리하게 되었으며, 또한 빠르고 정확하게 처리되기를 요구하고 있다. 현재 데이터 처리 중심부에 있는 Database는 대부분이 Relation DB 위주로 되어 있어 Datafile 에 데이터를 저장하고 있어 대용량의 이미지 데이터 처리에 적합하지가 않다. 본 논문에서는 이러한 단점을 보강하기 위해 Relation DB 하에서 대용량의 이미지 데이터 처리를 가능하게 하는 기법을 제시한다. 이렇게 함으로써 이미지 데이터를 Upload, Download 시 따른 응답 속도를 보장 할 수 있도록 LRU 알고리즘 기반으로 제안을 하였다. 본 논문에서 제안된 기법은 시뮬레이션을 통해 (1)기존 RDB(Relational Database)의 BLOB(Binary Large Object)필드를 이용한 이미지 데이터 처리 방식, (2)별도의 저장 공간에 이미지 데이터를 입/출하는 방식, (3)별도의 저장 공간에 이미지 데이터를 입/출력할 때 LRU(least Recently Used)알고리즘을 이용하는 방식에 대하여 성능 평가를 하였다. 그 결과 (3)별도의 저장 공간에 LRU(least Recently Used)알고리즘을 이용하여 입/출력하는 방식이 (1)기존의 RDB(Relational Database)형태에 BLOB(binary large object)필드를 이용한 것 보다 성능이 높음을 확인하였다.
대규모 데이터 센터는 클라우드 컴퓨팅을 가능하게 하고, 빅데이터 처리를 위해 널리 쓰이는 HDFS 혹은 MapReduce, Dryad와 같은 프레임워크는 분산 처리 환경에서 운영하는 것을 기반으로 설계되어 있어 일대일이 아닌 다대일 통신이 빈번히 발생한다. TCP Incast 문제는 다대일 통신에서 발생하는 문제로 단일 상위 서버에서 다수의 하위 서버로 일을 요청할 때, 요청된 결과가 단일 상위 서버로 동시에 응답할 때 발생한다. 기존의 분산 처리 환경에서는 작은 데이터를 처리하기 때문에 단일 상위 서버에서의 데이터 처리 부담이 적었다. 하지만 빅데이터를 처리하는 분산 처리 환경에서는 블록 단위의 큰 데이터를 처리하므로 데이터 처리 시간에 민감한 메시지 데이터에서 지연이 발생할 수 있다. 본 논문에서는 급격한 처리량 붕괴를 일으킬 수 있는 TCP Incast 문제 완화 알고리즘에 대하여 기술한다.
최근에 제한된 데이터 셋보다 센서 데이터 처리, 웹 서버 로그나 전화 기록과 같은 다양한 트랜잭션 로그 분석등과 관련된 대용량 데이터 스트림을 실시간으로 처리하는 것에 많은 관심이 집중되고 있으며, 특히 데이터 스트림의 조인 처리에 대한 관심이 증가하고 있다. 본 논문에서는 조인 연산을 빠르게 처리하기 위한 효율적인 해시 구조와 조인 방법에 대해서 연구하고 다양한 환경에서 제안 방법을 검증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.