• 제목/요약/키워드: 데이터증강

검색결과 494건 처리시간 0.026초

소리 데이터 분류에 대한 데이터 증대 방법 연구 (A study on data augmentation methods for sound data classification)

  • 장일식;박구만
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 하계학술대회
    • /
    • pp.1308-1310
    • /
    • 2022
  • 소리 데이터 분류는 단순 소리를 통한 분류, 감정 인식등 다양한 연구가 진행중이다. 심층 신경망에서 데이터의 부족과 과적합 문제를 개선하는 방법으로 데이터 증강은 중요하다. 본 논문에서는 3가지의 소리데이터(UrbanSound8K, RAVDESS, IRMAS)를 사용하였으며, 소리데이터는 멜 스펙트로그램을 통한 변환과정을 거쳐 네트워크 망에 입력된다. 입력된 신호는 다양한 네크워크 신경망(Bidirection LSTM, Bidirection LSTM Attention, Multi-Head Attention, CNN)을 통해 학습되어지며, 각각의 네트워크 신경망에서 데이터 증강 전후의 분류 정확도를 확인 하였다. 다양한 데이터셋과 다양한 네트워크 망에서의 데이터 증강 방법의 결과 비교를 통한 통찰을 얻을수 있을 것이다.

  • PDF

과거 상담대화를 활용한 개인화 대화생성을 위한 프롬프트 기반 데이터 증강 (Prompt-based Data Augmentation for Generating Personalized Conversation Using Past Counseling Dialogues)

  • 임채균;이혜우;오경진;성주원;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.209-213
    • /
    • 2023
  • 최근 자연어 이해 분야에서 대규모 언어모델 기반으로 프롬프트를 활용하여 모델과 상호작용하는 방법이 널리 연구되고 있으며, 특히 상담 분야에서 언어모델을 활용한다면 내담자와의 자연스러운 대화를 주도할 수 있는 대화생성 모델로 확장이 가능하다. 내담자의 상황에 따라 개인화된 상담대화를 진행하는 모델을 학습시키려면 동일한 내담자에 대한 과거 및 차기 상담대화가 필요하지만, 기존의 데이터셋은 대체로 단일 대화세션으로 구축되어 있다. 본 논문에서는 언어모델을 활용하여 단일 대화세션으로 구축된 기존 상담대화 데이터셋을 확장하여 연속된 대화세션 구성의 학습데이터를 확보할 수 있는 프롬프트 기반 데이터 증강 기법을 제안한다. 제안 기법은 기존 대화내용을 반영한 요약질문 생성단계와 대화맥락을 유지한 차기 상담대화 생성 단계로 구성되며, 프롬프트 엔지니어링을 통해 상담 분야의 데이터셋을 확장하고 사용자 평가를 통해 제안 기법의 데이터 증강이 품질에 미치는 영향을 확인한다.

  • PDF

목조건물 크랙 감지를 위한 데이터셋 증강 기법 (Dataset Augmentation Technique for Crack Detection of Wood Building)

  • 김범준;김인기;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.645-647
    • /
    • 2021
  • 본 논문에서는 목조건물의 Crack만을 움직여 Data set을 증강하는 기법을 제안한다. 이 기법은 이미지 내 Crack Detection의 학습 데이터를 만들기 위해 이미지의 전체적인 값으로 Flip, Rotation, Shift, Rescale 등의 변환을 통해 Data Augmentation을 진행하는 대신 Crack이라는 하나의 Object만을 가지고 새로운 데이터를 생성한다. 이때 Object는 관심 영역 내에서만 연산되어 기존의 방법보다 더욱 많은 데이터를 얻을 수 있으며, Crack이 관심 영역 밖으로 이동하지 않기 때문에 이상치 혹은 결측치가 존재하지 않는 데이터를 얻을 수 있다. 또한 Crack이 존재하지 않는 이미지에도 임의적으로 Crack을 생성하여 새로운 데이터를 만들 수 있다. 결론적으로 본 논문에서는 Crack Detection의 학습을 위하여 기존 방법보다 우수한 성능의 Data Augmentation을 제안하였다.

  • PDF

증강현실 그래프를 이용한 지역별 외식 성향 시각화 (Visualization of Local Eating-Out Trend Using AR Graph)

  • 김상준;고유진;박구만;최유주
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.700-701
    • /
    • 2019
  • 본 논문에서는 지역 데이터의 시각화에 적합한 증강현실 그래프를 제안하고, 이를 카드 사용 빅데이터에 적용하여 지역별 외식 성향 시각화 도구로 활용한 사례를 제시한다. 증강현실 그래프는 사용자가 위치한 해당 지역의 GPS 정보를 기반으로 빅데이터에서 분석 대상 지역을 선별하고, 지역별 특수 데이터를 찾아내어 해당 지역에 대한 빅데이타 분석 내용을 카메라 영상과 함께 시각화한 그래프이다. 증강현실 그래프를 적용한 외식 성향 시각화 사례에서는 카드 사용 가맹점 소재지 정보, 가맹점 업종, 카드사용시점(월), 카드 사용자 성별구분, 연령대, 월 카드사용금액 및 월 사용 건수 정보등을 수집하였다. 그리고, 분석 대상 지역에 대한 연령대별 외식 선호도 내용을 카드사용건수가 많은 업종별 순위 그래프로 시각화 하여 사용자의 위치에서 확인할 수 있도록 하였다. 제안 증강현실 그래프는 지역별 상권 현황, 아파트 시세 등에 효과적으로 적용될 수 있을 것으로 기대된다.

준지도 비디오 객체 분할 기술을 위한 데이터 증강 기법 (Data Augmentation Scheme for Semi-Supervised Video Object Segmentation)

  • 김호진;김동현;김정훈;임성훈
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.13-19
    • /
    • 2022
  • 동영상 객체 분할(VOS) 기술은 연속된 레이블링 데이터를 필요로 하며, 현재 공개된 데이터셋으로 훈련된 VOS방법은 그 성능이 제한된다. 이 문제를 해결하기 위해 본 논문에서는 간단하면서도 효과적인 동영상 데이터 증강 기술들을 제안한다. 첫번째 증강 기술은 영상 내에서 객체를 제외한 배경을 다른 영상의 배경으로 대체하는 기법이고, 두번째 기술은 학습될 동영상 데이터의 순서를 무작위 확률로 뒤집어 역 재생되는 영상을 학습시키는 기법이다. 두 증강 기술은 객체 분할 시 배경 정보에 강인한 추정을 가능하게 하였고, 추가 데이터 없이 기존 모델의 성능을 향상시킬 수 있음을 보였다.

신경망 기계번역에서 최적화된 데이터 증강기법 고찰 (Optimization of Data Augmentation Techniques in Neural Machine Translation)

  • 박찬준;김규경;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.258-261
    • /
    • 2019
  • 딥러닝을 이용한 Sequence to Sequence 모델의 등장과 Multi head Attention을 이용한 Transformer의 등장으로 기계번역에 많은 발전이 있었다. Transformer와 같은 성능이 좋은 모델들은 대량의 병렬 코퍼스를 가지고 학습을 진행하였는데 대량의 병렬 코퍼스를 구축하는 것은 시간과 비용이 많이 드는 작업이다. 이러한 단점을 극복하기 위하여 합성 코퍼스를 만드는 기법들이 연구되고 있으며 대표적으로 Back Translation 기법이 존재한다. Back Translation을 이용할 시 단일 언어 데이터를 가상 병렬 데이터로 변환하여 학습데이터의 양을 증가 시킨다. 즉 말뭉치 확장기법의 일종이다. 본 논문은 Back Translation 뿐만 아니라 Copied Translation 방식을 통한 다양한 실험을 통하여 데이터 증강기법이 기계번역 성능에 미치는 영향에 대해서 살펴본다. 실험결과 Back Translation과 Copied Translation과 같은 데이터 증강기법이 기계번역 성능향상에 도움을 줌을 확인 할 수 있었으며 Batch를 구성할 때 상대적 가중치를 두는 것이 성능향상에 도움이 됨을 알 수 있었다.

  • PDF

의료 데이터 불균형 문제 해결을 위한 생성적 적대 신경망 기반 데이터 증강 (Generative Adversarial Networks Based Data Augmentation to Address Medical Data Imbalances)

  • 최재홍;이승리;서영재;서원진;허종욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.350-352
    • /
    • 2022
  • 발병률이 낮은 병은 데이터 불균형 문제가 발생하며, 이는 의료계에서 겪는 원초적인 문제이다. 이런 불균형 문제를 해결하고자 Pix2Pix 로 생성적 적대 신경망 기반 의료 이미지 증강 기법을 설계하여 데이터 불균형 문제 해결 및 성능을 향상시켰다. 합성 데이터의 추가 및 기하학적 데이터 증강의 유무에 대한 4 가지 시나리오로 성능을 비교하여 제안된 기법이 가장 효과적임을 보인다.

준 지도 이상 탐지 기법의 성능 향상을 위한 섭동을 활용한 초구 기반 비정상 데이터 증강 기법 (Abnormal Data Augmentation Method Using Perturbation Based on Hypersphere for Semi-Supervised Anomaly Detection)

  • 정병길;권준형;민동준;이상근
    • 정보보호학회논문지
    • /
    • 제32권4호
    • /
    • pp.647-660
    • /
    • 2022
  • 최근 정상 데이터와 일부 비정상 데이터를 보유한 환경에서 딥러닝 기반 준 지도 학습 이상 탐지 기법이 매우 효과적으로 동작함이 알려져 있다. 하지만 사이버 보안 분야와 같이 실제 시스템에 대한 알려지지 않은 공격 등 비정상 데이터 확보가 어려운 환경에서는 비정상 데이터 부족이 발생할 가능성이 있다. 본 논문은 비정상 데이터가 정상 데이터보다 극히 작은 환경에서 준 지도 이상 탐지 기법에 적용 가능한 섭동을 활용한 초구 기반 비정상 데이터 증강 기법인 ADA-PH(Abnormal Data Augmentation Method using Perturbation based on Hypersphere)를 제안한다. ADA-PH는 정상 데이터를 잘 표현할 수 있는 초구의 중심으로부터 상대적으로 먼 거리에 위치한 샘플에 대해 적대적 섭동을 추가함으로써 비정상 데이터를 생성한다. 제안하는 기법은 비정상 데이터가 극소수로 존재하는 네트워크 침입 탐지 데이터셋에 대하여 데이터 증강을 수행하지 않았을 경우보다 평균적으로 23.63% 향상된 AUC가 도출되었고, 다른 증강 기법들과 비교했을 때 가장 높은 AUC가 또한 도출되었다. 또한, 실제 비정상 데이터에 유사한지에 대한 정량적 및 정성적 분석을 수행하였다.

인지증강을 위한 경험정보 인식 및 모델링 기술 동향 (Trends in Recognition and Modelling Technology of Experience Data for Augmented, Cognition)

  • 정현태;김가규;노경주;임지연;정승은
    • 전자통신동향분석
    • /
    • 제32권4호
    • /
    • pp.11-20
    • /
    • 2017
  • 본고에서는 인지증강을 위한 서비스, 경험정보 인식 기술과 경험정보 모델링 기술에 관한 동향을 살펴본다. 경험정보 기반 인지증강 서비스를 위해 기존의 센서 데이터 중심의 인식 기술과 더불어 개인 경험상황의 특징을 고려한 인식기술에 관한 연구와 다수의 이질적인 경험 데이터를 기반으로 한 사용자 특정 패턴분석을 위한 경험정보 모델링 및 분석 기법에 관한 지속적이고 폭넓은 연구가 필요하다.

데이터 증강을 통한 기계학습 능력 개선 방법 연구 (Study on the Improvement of Machine Learning Ability through Data Augmentation)

  • 김태우;신광성
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.346-347
    • /
    • 2021
  • 기계학습을 위한 패턴인식을 위해서는 학습데이터의 양이 많을수록 그 성능이 향상된다. 하지만 일상에서 검출해내야하는 패턴의 종류 및 정보가 항상 많은 양의 학습데이터를 확보할 수는 없다. 따라서 일반적인 기계학습을 위해 적은데이터셋을 의미있게 부풀릴 필요가 있다. 본 연구에서는 기계학습을 수행할 수 있도록 데이터를 증강시키는 기법에 관해 연구한다. 적은데이터셋을 이용하여 기계학습을 수행하는 대표적인 방법이 전이학습(transfer learning) 기법이다. 전이학습은 범용데이터셋으로 기본적인 학습을 수행한 후 목표데이터셋을 최종 단계에 대입함으로써 결과를 얻어내는 방법이다. 본 연구에서는 ImageNet과 같은 범용데이터셋으로 학습시킨 학습모델을 증강된 데이터를 이용하여 특징추출셋으로 사용하여 원하는 패턴에 대한 검출을 수행한다.

  • PDF