• 제목/요약/키워드: 데이터증강

검색결과 494건 처리시간 0.024초

CDBSMOTE : 클래스와 밀도기반의 합성 소수 오버샘플링 기술 (CDBSMOTE : Class and Density Based Synthetic Minority Oversampling Technique)

  • 배경환;이경현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.629-632
    • /
    • 2021
  • 머신러닝의 성능 저하에 크게 영향을 미치는 데이터 불균형은 데이터를 증강하거나 제거하여 해결할 수 있다. 본 논문에서는 지도학습에서 쓰이는 정답 데이터를 기반으로 새로운 데이터 증강기법인 CDBSMOTE을 제안한다. CDBSMOTE을 사용하면 임의의 값을 사용하지 않고, 기존의 데이터 증강기법의 문제점이었던 과적합을 최소화하며 지도학습 데이터를 효과적으로 증강시킬 수 있다.

증강방송 메타데이터 설계 및 저작도구 구현 (Metadata Design for Augmented Broadcasting Service, and Implementation of Authoring Tool)

  • 최범석;정영호;이원돈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 하계학술대회
    • /
    • pp.233-236
    • /
    • 2013
  • 본 논문에서는 증강현실을 방송환경에 접목한 증강방송 개념에 대한 소개와 이를 실현하기 위한 증강방송 메타데이터 및 증강방송 메타데이터를 저작하기 위한 저작도구에 대하여 소개한다. 방송환경이 모바일 환경과 달라 완벽한 증강 서비스를 제공하는데 있어서 한계가 있으나, TV 의 대 화면과 양질의 TV 프로그램, 스마트 TV 로의 발전에 따른 웹 환경 지원과 모션/음성 인식 인터페이스, 그리고 스마트 TV 애플리케이션의 등장은 증강방송의 가능성을 한층 높이고 있다. 이를 가능하게 하기 위하여 증강방송 메타데이터를 설계하였으며, 이를 사용자들이 편리하게 저작하기 위한 저작도구를 구현하였다.

  • PDF

EDA 기법을 적용한 BERT 기반의 감성 분류 모델 생성 (Sentiment Classification Model Development Based On EDA-Applied BERT)

  • 이진상;임희석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.79-80
    • /
    • 2022
  • 본 논문에서는 데이터 증강 기법 중 하나인 EDA를 적용하여 BERT 기반의 감성 분류 언어 모델을 만들고, 성능 개선 방법을 제안한다. EDA(Easy Data Augmentation) 기법은 테이터가 한정되어 있는 환경에서 SR(Synonym Replacement), RI(Random Insertion), RS(Random Swap), RD(Random Deletion) 총 4가지 세부 기법을 통해서 학습 데이터를 증강 시킬 수 있다. 이렇게 증강된 데이터를 학습 데이터로 이용해 구글의 BERT를 기본 모델로 한 전이학습을 진행하게 되면 감성 분류 모델을 생성해 낼 수 있다. 데이터 증강 기법 적용 후 전이 학습을 통해 생성한 감성 분류 모델의 성능을 증강 이전의 전이 학습 모델과 비교해 보면 정확도 측면에서 향상을 기대해 볼 수 있다.

  • PDF

이미지 이어붙이기를 이용한 인간-객체 상호작용 탐지 데이터 증강 (Human-Object Interaction Detection Data Augmentation Using Image Concatenation)

  • 이상백;이규철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권2호
    • /
    • pp.91-98
    • /
    • 2023
  • 인간-객체 상호작용 탐지는 객체 탐지와 상호작용 인식을 함께 풀어야하는 분야로 탐지 모델의 학습을 위해서 많은 데이터를 필요로 한다. 현재 공개된 데이터셋은 규모가 부족하여 데이터 증강 기법에 대한 요구가 커지고 있으나, 대부분의 연구에서 기존의 객체 탐지, 이미지 분할분야에서 활용하는 증강 기법을 활용하고 있는 실정이다. 이에 본 연구에서는 인간-객체 상호작용 탐지 분야에서 활용하는 데이터셋의 특성을 파악하고, 이를 통해 인간-객체 상호작용 탐지 모델 성능 향상에 효과적인 데이터 증강 기법을 제안한다. 본 연구에서 제안한 증강 기법에 대한 검증을 위하여 실험 환경을 구축하고, 기존의 학습 모델에 적용하여 증강 기법을 적용할 경우에 탐지 모델의 성능 향상이 가능함을 확인하였다.

센서 데이터 합성을 통한 반려동물 행동 감지 (Pet Behavior Detection through Sensor Data Synthesis)

  • 김형주;박찬;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.606-608
    • /
    • 2022
  • 센서 데이터를 활용한 행동 감지 연구는 인간 행동 인식을 선행연구로 진행되었으며, 인식의 정확도를 높이기 위해 전처리, 보간, 증강 등을 통한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 시계열 센서 데이터 증강을 통하여 반려동물의 행동 감지를 제안한다. ODROID 단일 보드 컴퓨터와 6축 센서(가속도, 자이로) 데이터를 탑재한 소형 디바이스를 사용하여 블루투스 통신을 통해 웹 서버 DB에 저장한다. 저장된 데이터는 이상치, 결측치 처리 후 정규화를 통해 시퀀스를 구성하는 전처리 과정을 거친다. 이후 GAN을 기반으로 한 시계열 데이터 증강을 진행한다. 이때, 데이터 증강은 입력된 텍스트에 따라 센서 데이터로 변환하여 데이터를 증강한다. 학습된 딥러닝 모델을 바탕으로 행동을 감지 후 평가 지표에 따라 모델 성능을 검증한다.

규칙기반 데이터 증강기법을 활용한 한국어 증상발화 데이터 구축 (Construction of Korean symptom articulation data using rule-based data augmentation technique)

  • 전성원;이동준;이동호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.360-362
    • /
    • 2023
  • 건강정보 검색 요구가 증가하면서 다양한 건강정보 검색 서비스가 제공되고 있다. 하지만 최근의 건강정보 검색 서비스는 정형화 된 전문적인 의료정보와 그 해석을 제공하기 때문에 사용자는 이러한 정보를 스스로 이해하여 원하는 건강정보를 검색해야 한다. 사용자의 검색 피로를 줄이고 원하는 정보를 정확하게 얻을 수 있는 건강정보 검색 시스템 개발을 위하여 사용자의 비의료적 표현인 한국어 증상발화 데이터 구축이 선행되어야 한다. 이러한 데이터 구축은 많은 시간과 비용이 필요하기 때문에 이를 줄이기 위한 규칙기반 데이터 증강기법을 제시하고, 이를 활용하여 한국어 증상발화 데이터를 증강하였다. 증강된 데이터의 유효성을 보이기 위하여 KoBERT 기반의 증상분류 실험을 진행하였으며, 증강된 데이터가 그 전의 데이터보다 F1 스코어가 더 높음을 확인할 수 있었다.

보조 분류기를 이용한 GAN 모델에서의 데이터 증강 누출 방지 기법 (A Scheme for Preventing Data Augmentation Leaks in GAN-based Models Using Auxiliary Classifier)

  • 심종화;이지은;황인준
    • 전기전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.176-185
    • /
    • 2022
  • 데이터 증강이란 다양한 데이터 변환 및 왜곡을 통해 데이터셋의 크기와 품질을 개선하는 기법으로, 기계학습 모델의 과적합 문제를 해결하기 위한 대표적인 접근법이다. 그러나 심층학습 이미지 생성 모델인 GAN 기반 모델에서 데이터 증강을 적용하면 생성된 이미지에 데이터 변환과 왜곡이 반영되는 증강 누출 문제가 발생하여 생성 이미지의 품질이 하락한다. 이러한 문제를 해결하기 위해 본 논문에서는 데이터 증강의 종류와 수에 관계없이 증강 누출을 방지하는 기법을 제안한다. 증강 누출의 발생 조건을 분석하였으며, 보조적인 데이터 증강 작업 분류기를 GAN 모델에 적용하여 증강 누출을 방지하였다. 정성적 정량적 평가를 통해 제안된 기법을 적용하면 증강 누출이 발생하지 않음을 보이고 추가적으로 생성 이미지의 품질을 향상시키며 기존 기법과 비교하여 발전된 성능을 보임을 입증하였다.

에세이 자동 평가 모델 성능 향상을 위한 데이터 증강과 전처리 (Data Augmentation and Preprocessing to Improve Automated Essay Scoring Model)

  • 고강희;김도국
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.327-332
    • /
    • 2023
  • 데이터의 품질과 다양성은 모델 성능에 지대한 영향을 끼친다. 본 연구에서는 Topic을 활용한 데이터 전처리와 BERT 기반 MLM, T5, Random Masking을 이용한 증강으로 데이터의 품질과 다양성을 높이고자 했으며, 이를 KoBERT 기반 에세이 자동 평가 모델에 적용했다. 데이터 전처리만 진행했을 때, Quadratic Weighted Kappa Score(QWK)를 기준으로 모델이 에세이의 모든 평가 항목에 대해 베이스라인보다 더욱 높은 일치도를 보였으며 평가항목별 일치도의 평균을 기준으로 0.5368029에서 0.5483064(+0.0115035)로 상승했다. 여기에 제안하는 증강 방식을 추가 할 경우 MLM, T5, Random Masking 모두 성능 향상 효과를 보였다. 특히, MLM 데이터 증강 방식을 추가로 적용하였을 때 최종적으로 0.5483064에서 0.55151645(+0.00321005)으로 상승해 가장 높은 일치도를 보였으며, 에세이 총점으로 QWK를 기준으로 성능을 평가하면 베이스라인 대비 0.4110809에서 0.4380132(+0.0269323)로의 성능 개선이 있었다.

  • PDF

변분 오토인코더와 비교사 데이터 증강을 이용한 음성인식기 준지도 학습 (Semi-supervised learning of speech recognizers based on variational autoencoder and unsupervised data augmentation)

  • 조현호;강병옥;권오욱
    • 한국음향학회지
    • /
    • 제40권6호
    • /
    • pp.578-586
    • /
    • 2021
  • 종단간 음성인식기의 성능향상을 위한 변분 오토인코더(Variational AutoEncoder, VAE) 및 비교사 데이터 증강(Unsupervised Data Augmentation, UDA) 기반의 준지도 학습 방법을 제안한다. 제안된 방법에서는 먼저 원래의 음성데이터를 이용하여 VAE 기반 증강모델과 베이스라인 종단간 음성인식기를 학습한다. 그 다음, 학습된 증강모델로부터 증강된 데이터를 이용하여 베이스라인 종단간 음성인식기를 다시 학습한다. 마지막으로, 학습된 증강모델 및 종단간 음성인식기를 비교사 데이터 증강 기반의 준지도 학습 방법으로 다시 학습한다. 컴퓨터 모의실험 결과, 증강모델은 기존의 종단간 음성인식기의 단어오류율(Word Error Rate, WER)을 개선하였으며, 비교사 데이터 증강학습방법과 결합함으로써 성능을 더욱 개선하였다.

음성위조 탐지에 있어서 데이터 증강 기법의 성능에 관한 비교 연구 (Comparative study of data augmentation methods for fake audio detection)

  • 박관열;곽일엽
    • 응용통계연구
    • /
    • 제36권2호
    • /
    • pp.101-114
    • /
    • 2023
  • 데이터 증강 기법은 학습용 데이터셋을 다양한 관점에서 볼 수 있게 해주어 모형의 과적합 문제를 해결하는데 효과적으로 사용되고 있다. 이미지 데이터 증강기법으로 회전, 잘라내기, 좌우대칭, 상하대칭등의 증강 기법 외에도 occlusion 기반 데이터 증강 방법인 Cutmix, Cutout 등이 제안되었다. 음성 데이터에 기반한 모형들에 있어서도, 1D 음성 신호를 2D 스펙트로그램으로 변환한 후, occlusion 기반 데이터 기반 증강기법의 사용이 가능하다. 특히, SpecAugment는 음성 스펙트로그램을 위해 제안된 occlusion 기반 증강 기법이다. 본 연구에서는 위조 음성 탐지 문제에 있어서 사용될 수 있는 데이터 증강기법에 대해 비교 연구해보고자 한다. Fake audio를 탐지하기 위해 개최된 ASVspoof2017과 ASVspoof2019 데이터를 사용하여 음성을 2D 스펙트로그램으로 변경시켜 occlusion 기반 데이터 증강 방식인 Cutout, Cutmix, SpecAugment를 적용한 데이터셋을 훈련 데이터로 하여 CNN 모형을 경량화시킨 LCNN 모형을 훈련시켰다. Cutout, Cutmix, SpecAugment 세 증강 기법 모두 대체적으로 모형의 성능을 향상시켰으나 방법에 따라 오히려 성능을 저하시키거나 성능에 변화가 없을 수도 있었다. ASVspoof2017 에서는 Cutmix, ASVspoof2019 LA 에서는 Mixup, ASVspoof2019 PA 에서는 SpecAugment 가 가장 좋은 성능을 보였다. 또, SpecAugment는 mask의 개수를 늘리는 것이 성능 향상에 도움이 된다. 결론적으로, 상황과 데이터에 따라 적합한 augmentation 기법이 다른 것으로 파악된다.