In this paper, we propose a sales forecasting model that forecasts the sales volume of short sleeves and outerwear according to the temperature change by utilizing accumulated big data from the online shopping mall 'A' over the past five years to increase sales volume and efficient inventory management. The proposed model predicts sales of short sleeves and outerwear according to temperature changes in 2018 by analyzing sales volume of short sleeves and outerwear from 2014 to 2017. Using the proposed sales forecasting model, we compared the sales forecasts of 2018 with the actual sales volume and found that the error rates are ±1.5% and ±8% for short sleeve and outerwear respectively.
In order to reduce the harmful effects on the human body caused by the recent increase in the generation of fine dust in Korea, there is a need for technology to help predict the level of fine dust and take precautions. In this paper, we propose a 1D Convolutional-Recurrent Neural Network (1-D CRNN) model to predict the level of fine dust in Korea. The proposed model is a structure that combines the CNN and the RNN, and uses domestic and foreign fine dust, wind direction, and wind speed data for data prediction. The proposed model achieved an accuracy of about 76%(Partial up to 84%). The proposed model aims to data prediction model for time series data sets that need to consider various data in the future.
Journal of the Korea Academia-Industrial cooperation Society
/
v.22
no.3
/
pp.20-29
/
2021
In the Industry 4.0 era, artificial intelligence has attracted considerable interest for learning mass data to improve the accuracy of forecasting and classification. On the other hand, the current method of detecting anomalies relies on traditional statistical methods for a limited amount of data, making it difficult to detect accurate anomalies. Therefore, this paper proposes an artificial intelligence-based anomaly detection methodology to improve the prediction accuracy and identify new data patterns. In particular, data were collected and analyzed from the point of view that sensor data collected at vehicle idle could be used to detect abnormalities. To this end, a sensor was designed to determine the appropriate time length of the data entered into the forecast model, compare the results of idling data with the overall driving data utilization, and make optimal predictions through a combination of various sensor data. In addition, the predictive accuracy of artificial intelligence techniques was presented by comparing Convolutional Neural Networks (CNN) and Long Short Term Memory (LSTM) as the predictive methodologies. According to the analysis, using idle data, using 1.5 times of the data for the idling periods, and using CNN over LSTM showed better prediction results.
Kim, Youngchan;Kim, Junwon;Han, Yohee;Kim, Jongjun;Hwang, Jewoong
The Journal of The Korea Institute of Intelligent Transport Systems
/
v.19
no.1
/
pp.1-16
/
2020
With the advent of the fourth industrial revolution era, there has been a growing interest in deep learning using big data, and studies using deep learning have been actively conducted in various fields. In the transportation sector, there are many advantages to using deep learning in research as much as using deep traffic big data. In this study, a short -term travel speed prediction model using LSTM, a deep learning technique, was constructed to predict the travel speed. The LSTM model suitable for time series prediction was selected considering that the travel speed data, which is used for prediction, is time series data. In order to predict the travel speed more precisely, we constructed a model that reflects both temporal and spatial effects. The model is a short-term prediction model that predicts after one hour. For the analysis data, the 5minute travel speed collected from the Seoul Transportation Information Center was used, and the analysis section was selected as a part of Gangnam where traffic was congested.
Lee, Yoon Seon;Lee, Ju Hong;Choi, Bum Ghi;Song, Jae Won
Smart Media Journal
/
v.10
no.2
/
pp.16-21
/
2021
Financial time series analysis plays a very important role economically and socially in modern society and is an important task affecting global development, but due to difficulties such as a lot of noise and uncertainty, financial time series analysis prediction is a difficult research topic. In this paper, we propose a market prediction method (MPIL) by converting unstructured data and structured data into images. For market prediction, it analyzes SNS and news data, which is unstructured data for n days, and converts the market data, which is structured data, to an image with the GADF algorithm, and predicts an ultra-short market that predicts the price of n+1 days through image learning. MPIL has an average accuracy of 56%, which is higher than the 50% average accuracy of the model that predicts the market with LSTM by using sentiment analysis used for existing market forecasting.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.1
/
pp.25-33
/
2009
Recently, the TS fuzzy models that include the linear equations in the consequent part are widely used for time series forecasting, and the prediction performance of them is somewhat dependent on the characteristics of time series such as stationariness. Thus, a new prediction method is suggested in this paper which is especially effective to nonstationary time series prediction. First, data preprocessing is introduced to extract the patterns and regularities of time series well, and then multiple model TS fuzzy predictors are constructed. Next, an appropriate model is chosen for each input data by an adaptive model selection mechanism based on rough sets, and the prediction is going. Finally, the error compensation procedure is added to improve the performance by decreasing the prediction error. Computer simulations are performed on typical cases to verify the effectiveness of the proposed method. It may be very useful for the prediction of time series with uncertainty and/or nonstationariness because it handles and reflects better the characteristics of data.
전력 수요 예측은 전력 수급 안정과 양질의 전력을 공급하기 위한 필수 기법이며 경쟁적인 전력시장에서 전력요금과 밀접한 관련이 있다. 그러므로, 경쟁적인 전력시장 구조하의 시장 참여자에게 있어서 전력 수요 예측은 매우 관심 있는 사항이다. 최근의 전력 수요 예측 기법으로 예측한 오차율을 살펴보면 평일과는 다르게 특수일의 전력 수요예측은 평균 5%를 상회하는 수준으로 예측의 정확도가 평일 예측에 비해 크게 낮은데 이유는 특수일이 평일에 비하여 부하의 크기가 다소 낮게 나타나고 특수일 마다 계절적인 차이가 있으며 각각의 특수일 마다 고유한 부하의 특성이 있으므로 과거 데이터를 이용할 때 동일 특수일을 이용하게 되며 따라서 평일과는 다르게 일년 단위로 과거 데이터 값들이 취득되므로 오차율이 커진다. 따라서 데이터들을 퍼지화하여 선형계획법을 수행하여 평균 $2{\sim}3%$ 정도의 우수한 결과를 도출한 바 있다. 본 논문에서는 퍼지 선형회귀분석법을 이용한 예측 기법에 최소자승법을 도입하여 특수일 전력 수요예측의 정확도를 개선하였다.
Park, Koo-Rack;Jung, Jin-Young;Ahn, Woo-Young;Chung, Young-Suk
Proceedings of the Korean Society of Computer Information Conference
/
2012.07a
/
pp.329-330
/
2012
인터넷과 웹의 발전으로 수많은 정보가 발생하고 있으며, 공공기간도 많은 정보를 축적하고 있다. 이에 각 국에서는 공공기간이 보유하는 데이터를 공개하고 있으며 우리나라도 통계청을 중심으로 다양한 데이터를 공개하고 있다. 그러나 공개된 자료의 활용도가 낮은 편이다. 본 논문에서는 공개된 공공데이터 중 에너지 소비 데이터를 활용하고자 한다. 에너지 소비 데이터를 미래 예측 연구에 많이 이용되고 있는 마코프 프로세스를 적용하여, 에너지 소비를 예측할 수 있는 모델링을 제안하고, 그 기대 효과에 대해 논의 한다.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.453-455
/
2023
본 연구는 은행에서 리스크 관리 자동화를 위해 고객의 대출 상환 여부 예측 모델을 제안하고자 한다. 예측 모델로 금융 데이터 같은 정형데이터에서 전통적으로 높은 성능을 보인 의사결정나무기반 모델 LightGBM, CatBoost, XGB 와 최근 제안된 정형데이터에서 사용할 수 있는 설명 가능한 딥러닝 기반 모델 TabNet 간의 성능 비교를 진행한다. 다만, 대출 상환 여부 데이터는 불균형 클래스 데이터로 구성되어있어 샘플링을 진행한다. SMOTE, Random Under Sampling, 혼합 방식을 비교해 가장 높은 성능의 샘플링 기법을 제안한다. 대출 상환 여부 예측 결과 TabNet 모델이 의사결정나무모델들보다 좋은 성능을 보여 정형데이터에서 의사결정나무 기반 모델을 딥러닝 모델이 대체 할 수 있는 가능성을 확인했다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.96-98
/
2000
본 논문에서는 상거래 환경에서 구매자와 비구매자들에 대한 데이터를 학습한 후, 잠재고객들 중에서 구매 확률이 높은 사람을 예측하는 문제에 효율적으로 접근하기 위해 능동적인 데이터 선택 기법을 이용한다. 실험 데이터는 ColL Challenge 2000에서 얻은 데이터로서, 구매자들의 정보보다 비구매자들의 정보가 더 많기 때문에 상당히 균형이 맞지 않는다. 따라서 모든 데이터를 한꺼번에 학습하는 경우에 성능이 좋지 않다. 본 논문에서는 이러한 불균형 분포를 갖는 실제적인 문제에 있어서 성능이 좋지 않다. 본 논문에서는 이러한 불균형 분포를 갖는 실제적인 문제에 있어서 RBF 기반의 신경망을 가지고 능동 학습을 함으로써 기존의 뱃치학습 보다 예측의 정확도를 향상시킬 수 있음을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.