Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.310-312
/
2004
이 논문에서는, 단백질의 상호작용을 다양한 아미노산의 속성과 Support Vector Machine(SVM)을 사용하여 예측하였다. SVM을 사용한 단백질 상호작용의 예측 시스템에 단백질 상호작용에 중요한 작용을 하는 아미노산의 속성을 사용하고 있다. 이번 실험은 9가지의 아미노산의 속성의 조합 즉, 511(2$^{9}$ -1)가지의 아미노산 속성을 SVM 학습데이터로 사용하여 예측시스템의 결과를 비교한다. 실험에는 Database of Interacting Proteins(DIP)를 사용하였다. 실험을 위하여 DIP의 H.pylori를 학습용데이터로 사용하고, E.coli를 예측데이터(검증데이터)로 사용하였다. 실험에 따르면 H.pylori의 학습데이터와 E.coli를 예측데이터의 가공에 '소수성'을 사용한 방법보다 '방향성'을 사용한 방법이 더 높은 수치를 나타냈다.
Proceedings of the Korea Information Processing Society Conference
/
2020.11a
/
pp.788-791
/
2020
낙농업에서 경제적 손실을 불러일으키고 관찰 시간과 비용이 필요한 젖소의 유방염 관리는 중요하다. 그러나 지금까지의 연구는 유방염 진단에 초점을 맞추고 있고, 예측하려는 시도는 전무하다. 유방염에 걸린 개체는 며칠 동안 우유를 생산할 수 없기 때문에 낙농가에 막대한 피해를 준다. 따라서 젖소가 유방염에 걸려 증상이 나타나기 전에 미리 파악해 조처를 할 수 있도록 하는 것이 중요하다. 이에 본 연구는 유방염 예측을 위해 생체 데이터를 포함한 다중 센싱 데이터를 사용해 유방염 예측 모델을 개발하였다. 모델에 사용된 데이터는 충청남도의 농가에 설치된 로봇 착유기로 부터 수집하였으며, 일정 기간 동안의 다중 센싱 데이터를 바탕으로 다음 날의 유방염 여부를 예측한다. 많은 양의 비선형 데이터를 효과적으로 처리하기 위해 다층 퍼셉트론을 사용해 모델을 학습하였다. 그 결과, 81.6%의 예측 정확도를 보였으며 교차 검증을 통해 정확도뿐만 아니라 재현율까지 우수함을 확인할 수 있었다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.07a
/
pp.37-38
/
2022
농산물의 산지 가격이나 도매가격이 등락하면, 즉시 또는 일정한 시차 이후에 소비자가격도 등락한다. 본 논문에서는 선형회귀모델을 통해 쌀 가격을 예측하고 쌀 가격에 영향을 미치는 날씨의 시기를 찾아보고자 한다. 이에 따라 KAMIS, 기상자료개방포털, KOSIS에서 수집한 날씨, 생산량, 그리고 소비자물가 등락률 데이터를 이용하여 쌀 가격 예측을 수행하고, 날씨 데이터와 쌀 가격 데이터의 날짜 간격을 두어 날씨가 쌀 가격에 영향을 미치는 시기를 알아보았다. 모델 평가 결과, 2개월 간격을 두고 예측한 RMSE가 164.135로 가장 큰 영향을 미쳤다. 본 연구를 기반으로 향후 다른 농산물의 가격 예측도 가능할 것이며 농산물에 영향을 미치는 변수의 시기도 예측할 수 있을 것으로 기대한다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.292-294
/
2004
단백질 상호작용 검출 방법의 발달로 많은 양의 데이터가 산출되고 있고, 이러한 상호작용 데이터의 방대한 양으로 인해 통계적 방법을 이용하여 데이터를 처리함으로서 유용한 지식을 얻을 수 있다 예측한 상호작용 데이터는 첫째, 대량의 데이터를 생산해내므로, 많은 false-positive를 내포하고 있고, 둘째, 예측한 상호작용을 검증시 실험을 하는 방법 외에는 신뢰도를 측정하기가 어렵다는 문제점이 있다. 본 연구에서는 점수 할당시스템을 사용함으로서 예측한 인간 단백질 상호작용 데이터의 false-positive를 줄이고, 각각 상호작용에 점수를 부설함으로서 상호작용 데이터의 신뢰도를 검증하는 방법을 제안하고 있다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.26
no.7
/
pp.1078-1090
/
2022
The distribution patterns of battery usage time data per battery level are able to affect the performance of estimating battery remaining time in mobile devices. Outliers may mainly affect the estimation performance of statistical regression methods. In this paper, we propose a software framework that detects and processes outliers to improve the estimation performance of statistical regression methods. The proposed framework first detects outliers that degrade the estimation performance. The proposed framework replaces outliers with smoothed data. The difference between an outlier and its replaced data will be properly distributed into individual data. Finally, individual data are reinforced to improve the estimation performance. The numerical results obtained by experimenting the proposed framework confirmed that it yielded good performance of estimating battery remaining time.
영화 <마이너리티 리포트>가 점점 현실화되고 있다. '빅데이터'를 기반으로 한 범죄 예측 지도가 만들어지고, 미국에서는 이를 활용한 '헌치램' 같은 범죄 예측 시스템이 이미 실용화되고 있다. 다음 범죄가 어디서 일어날지 예측해 영리하게 대처하는 빅데이터 세계를 들여다보자.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.241-243
/
2004
위치기반서비스 응용 분야에서 위치 데이터를 저장하기 위하여 일반적으로 이동체의 위치 데이터를 주기적으로 수집한다. 주기적으로 수집된 위치 데이터는 보고 주기 사이의 위치 변화를 반영하지 못하기 때문에 시간에 대한 선형 함수를 이용하여 예측된 위치 데이터와 오차가 발생한다. 따라서 오차가 존재하는 불확실한 미래 위치 데이터로 인하여 미래 위치 색인에서 검색의 정확도가 떨어지는 문제점이 발생한다. 이 논문에서는 주기적인 위치보고 이동체에서 발생하는 불확실한 위치 데이터를 처리하기 위해서 예측된 위치 데이터에 예측 오차분을 반영한 불확실성 영역을 사용한다 그리고 이동체의 불확실성 영역을 설정하기 위하여 최근 예측 오차 가중치 기법과 칼만 필터 기법을 제안하고 이를 기반으로 하는 불확실 위치 처리 기법을 이동체 미래 위치 색인에서 구현하고 성능 비교 평가를 수행한다. 성능 평가 결과에 따르면 기존의 선형함수 기반 예측 기법보다 불확실 위치 처리 기법이 영역 검색의 정확도가 향상되는 장점을 가진다.
Park, Giljoo;Kim, Young-Chan;Lee, ChangYeol;Jo, Young-do;Chung, Won Hee
Proceedings of the Korean Society of Disaster Information Conference
/
2017.11a
/
pp.360-361
/
2017
도시가스 배관의 안전을 위해 다양한 시스템이 가동되고 있지만 대부분 현장점검에 의존하는 한계점을 가지고 있다. 본 연구에서는 국내 도시가스 공급업체들 중 하나인 중부도시가스사의 실시간 배관운영 데이터를 분석해 배관의 위험을 예측한다. 배관의 압력, 출력전압, 출력전류, 방식전위, 전위값 데이터와 기타 도시가스 관련요인 데이터를 통합해 상관분석을 진행한다. 그리고 특정 공급권역의 실시간 배관 압력 데이터를 분석해 압력 수치를 예측한다. Random forest regression과 support vector regression(SVR) 알고리즘을 사용해 모델을 구성한 결과 배관 데이터의 시계열 정보를 추가한 데이터 셋과 random forest regression을 사용한 모델에서 가장 우수한 예측 성능을 보인다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.571-573
/
2022
최근 금융기관에서는 축적된 금융 빅데이터를 활용하여 차별화된 서비스를 강화하고 있다. 기업고객에 투자하기 위해서는 보다 정밀한 기업분석이 필요하다. 본 연구는 대만기업 6,819개의 95개 재무데이터를 가지고, 비대칭 데이터 문제해결, 데이터 표준화 등 데이터 전처리 작업을 하였다. 해당 데이터는 로지스틱 회기, SVM, K-NN, 나이브 베이즈, 의사결정나무, 랜덤포레스트 등 9가지 분류모델에 5겹 교차검증을 적용하여 학습한 후 모델 성능을 비교하였다. 이 중에서 성능이 가장 우수한 분류모델을 선택하여 예측 결정 이유를 판단하고자 설명 가능한 인공지능(XAI)을 적용하여 예측 결과에 대한 설명을 부여하여 이를 분석하였다. 본 연구를 통해 데이터 전처리에서부터 모델 예측 결과 설명에 이르는 분류예측모델의 전주기를 자동화하는 시스템을 제시하고자 한다.
This study proposes a way to timely forecast open government data (OGD) demand(i.e., OGD requests, search queries, etc.) by using keyword network analysis. According to the analysis results, most of the OGD belonging to the high-demand topics are provided by the domestic OGD portal(data.go.kr), while the OGD related to users' actual needs predicted through topic association analysis are rarely provided. This is because, when providing(or selecting) OGD, relevance to OGD topics takes precedence over relevance to users' OGD requests. The proposed keyword network analysis framework is expected to contribute to the establishment of OGD policies for public institutions in the future as it can quickly and easily forecast users' demand based on actual OGD requests.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.