Journal of the Korean Society for Library and Information Science
/
v.53
no.2
/
pp.247-266
/
2019
The purpose of this study is to propose a W3C standard, DCAT, to manage and service dataset that is becoming increasingly important as new knowledge information resources. To do this, we first analyzed the class and properties of the four core classes of DCAT. In addition, I modeled and presented a system that can manage and service various data sets based on DCAT in digital library. The system is divided into source data, data set management, linked data connection, and user service. Especially, the DCAT mapping function is suggested in dataset management. This feature can ensure interoperability of various datasets.
Proceedings of the Korea Information Processing Society Conference
/
2023.11a
/
pp.678-680
/
2023
본 연구는 2022년 유네스코 인류무형유산 대표목록에 등재된 탈춤 동작을 디지털화하여 후속 세대에게 정보를 제공하는 것을 목적으로 한다. 데이터 수집은 국가무형문화제로 지정된 탈춤 단체 13개, 시도무형문화재 단체 5개에 소속된 무형문화재, 전승자 39명이 관성식 모션 캡처 장비를 착용하고, 8대의 카메라를 이용하여 수집하였다. 데이터 가공은 바운딩박스를 수행하였고, 탈춤동작 추정은 YOLO v8을 사용하였고 탈춤 동작 분류는 YOLO v8에 CNN모델을 결합하여 130개의 탈춤을 분류하였다. 연구결과, mAP-50은 0.953, mAP50-95는 0.596, Accuracy 70%를 달성하였다. 향후 학습용 데이터셋 구축량이 늘어나고, 데이터 품질이 개선된다면 탈춤 분류 성능은 더욱 개선될 것이라 기대한다.
Park, Jin Su;Jeong, Ji Seong;Yang, Chul Seung;Lee, Jeong Gi
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.899-904
/
2022
As the world becomes an aging society due to a decrease in the birth rate and an increase in life expectancy, a system for health management of the elderly population is needed. Among them, various studies on occupancy and activity types are being conducted for smart home care services for indoor health management. In this paper, we propose a random forest model that classifies activity type as well as occupancy status through indoor temperature and humidity, CO2, fine dust values and UWB radar positioning for smart home care service. The experiment measures indoor environment and occupant positioning data at 2-second intervals using three sensors that measure indoor temperature and humidity, CO2, and fine dust and two UWB radars. The measured data is divided into 80% training set data and 20% test set data after correcting outliers and missing values, and the random forest model is applied to evaluate the list of important variables, accuracy, sensitivity, and specificity.
The Journal of the Convergence on Culture Technology
/
v.6
no.2
/
pp.449-454
/
2020
This paper proposes a machine learning-based emotion analysis system that detects a user's depression through their SNS posts. We first made a list of keywords related to depression in Korean, then used these to create a training data by crawling Twitter data - 1,297 positive and 1,032 negative tweets in total. Lastly, to identify the best machine learning model for text-based depression detection purposes, we compared RNN, LSTM, and GRU in terms of performance. Our experiment results verified that the GRU model had the accuracy of 92.2%, which is 2~4% higher than other models. We expect that the finding of this paper can be used to prevent depression by analyzing the users' SNS posts.
Journal of the Korea Society of Computer and Information
/
v.25
no.4
/
pp.141-148
/
2020
Automatic term extraction is to recognize domain-specific terms given a collection of domain-specific text. Previous term extraction methods operate effectively in unsupervised manners which include extracting candidate terms, and assigning importance scores to candidate terms. Regarding the calculation of term importance scores, the study focuses on utilizing sets of inner and outer terms of a candidate term. For a candidate term, its inner terms are shorter terms which belong to the candidate term as components, and its outer terms are longer terms which include the candidate term as their component. This work presents various functions that compute, for a candidate term, term strength from either set of its inner or outer terms. In addition, a scoring method of a term importance is devised based on C-value score and the term strength values obtained from the sets of inner and outer terms. Experimental evaluations using GENIA and ACL RD-TEC 2.0 datasets compare and analyze the effectiveness of the proposed term extraction methods for English. The proposed method performed better than the baseline method by up to 1% and 3% respectively for GENIA and ACL datasets.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.472-472
/
2017
재해로 인한 피해가 급증함에 따라 이를 예방하기 위한 풍수해 피해예측의 필요성이 증가하였고 관련된 다양한 연구가 진행되고 있다. 타 부처 및 각 지자체에서는 각종 재해지도들을 작성하여 만들어진 재해지도는 작성 유형과 방법 등에 따라 다양한 데이터와 서로 다른 정보를 포함하고 있어 데이터 정보를 표준화 시키고 필요한 정보를 효율적으로 찾아 연계 활용하기 위하여 본 연구를 수행하고자 한다. 메타데이터란 데이터에 대한 정보를 의미하며 데이터 변화의 근원과 변화의 흐름을 말한다. 메타데이터 관련 표준으로는 ISO19115(국제표준), KSXISO19115(국가표준), TTAS.KO-10.0139(유통목록 표준), TTAS.IS-19115(관리용 표준)이 있다. 본 연구에서는 국제표준을 준용하여 풍수해 피해 예측지도의 체계적 관리를 위한 메타데이터 설계 및 관리 시스템 구축 방안을 제시하고자 하였다. 풍수해 피해예측지도 메타데이터 관리 시범 시스템 구축을 위한 표준, 정보의 특성, 사용자 수준 등을 고려하여 설계 기본방향 설정하였으며, 풍수해 피해예측지도 정보 메타데이터 표준안 수립에 반영하였다. 그 결과, 메타데이터 패키지는 총 9개의 섹션(클래스)으로 구성하여 정의하였고 하위개체를 설정 및 연계하여 메타데이터 개체셋 정보를 구성하였다. 풍수해 피해예측지도 메타데이터 관리 시범 시스템 설계 제시를 위해 DB항목 조사 및 도출, 데이터 연계 활용 모델 구축, 프로토타입 개발순으로 연구를 수행하였다. 또한 표출 대상 데이터 항목별 분류, 방재활용 단계, 지역구분 등을 주제로 데이터 Mapping 자료를 작성하였고, 설계 기본 방향에 의하여 설정된 기준으로 데이터 항목별 메타데이터 DB를 작성하여 풍수해 피해예측지도 메타데이터 관리 시범 시스템을 설계하였다. 본 연구 결과는 추후 풍수해 피해예측지도 표준 데이터 및 풍수해 피해예측지도 표준 데이터 모델 구축에 활용 가능하며 표준화 연계활용을 위한 연구에 기여할 것으로 판단된다.
Somakhamixay Oui;Kyung-Hee Lee;HyungChul Rah;Eun-Seon Choi;Wan-Sup Cho
The Journal of Bigdata
/
v.6
no.2
/
pp.169-179
/
2021
Consumers' food consumption behavior is likely to be affected not only by structured data such as consumer panel data but also by unstructured data such as mass media and social media. In this study, a deep learning-based consumption prediction model is generated and verified for the fusion data set linking structured data and unstructured data related to food consumption. The results of the study showed that model accuracy was improved when combining structured data and unstructured data. In addition, unstructured data were found to improve model predictability. As a result of using the SHAP technique to identify the importance of variables, it was found that variables related to blog and video data were on the top list and had a positive correlation with the amount of paprika purchased. In addition, according to the experimental results, it was confirmed that the machine learning model showed higher accuracy than the deep learning model and could be an efficient alternative to the existing time series analysis modeling.
The Journal of the Convergence on Culture Technology
/
v.9
no.4
/
pp.401-408
/
2023
The purpose of this study is to design textbook metadata as a basic task for building a textbook database. To this end, reading textbooks were defined as a category of textbooks, and a metadata development methodology was established through previous research. In order to ensure that bibliographically essential elements are not omitted, the catalog description elements of institutions that collect, accumulate, and service textbooks such as the National Library of Korea were investigated. The elements of Dublin Core, MODS, and KEM were mapped to derive elements suitable for describing textbooks. Finally, a set of textbook metadata elements consisting of 14 elements in three categories - bibliography, context, and textbook characteristics were presented by adding publication type, genre, and curriculum period elements. The 14 elements are titles, authors, publications, formats, identification sign, languages, locations, subject names, annotation, genres, table of contents, subjects, curriculum period, and curriculum information. In this study, we contributed to this field by discussing how to organize textbook resources with national knowledge resources, and in future studies, we proposed to evaluate usability by applying metadata elements to actual textbooks and revise and supplement them according to the evaluation results.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.28
no.4
/
pp.301-319
/
2017
The task of author name disambiguation involves identifying an author with different names or different authors with the same name. The author name disambiguation is important for correctly assessing authors' research achievements and finding experts in given areas as well as for the effective operation of scholarly information services such as citation indexes. In the study, we performed error correction and normalization of data and applied rules-based author name disambiguation to compare with baseline machine learning disambiguation in order to see if human intervention could improve the machine learning performance. The improvement of over 0.1 in F-measure by the corrected and normalized email-based author name disambiguation over machine learning demonstrates the potential of human pattern identification and inference, which enabled data correction and normalization process as well as the formation of the rule-based diambiguation, to complement the machine learning's weaknesses to improve the author name disambiguation results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.