• 제목/요약/키워드: 데이터셋 검색

검색결과 93건 처리시간 0.023초

KFREB: 생성형 한국어 대규모 언어 모델의 검색 기반 생성 평가 데이터셋 (KFREB: Korean Fictional Retrieval-based Evaluation Benchmark for Generative Large Language Models)

  • 이정섭;손준영;이태민;박찬준;강명훈;박정배;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.9-13
    • /
    • 2023
  • 본 논문에서는 대규모 언어모델의 검색 기반 답변 생성능력을 평가하는 새로운 한국어 벤치마크, KFREB(Korean Fictional Retrieval Evaluation Benchmark)를 제안한다. KFREB는 모델이 사전학습 되지 않은 허구의 정보를 바탕으로 검색 기반 답변 생성 능력을 평가함으로써, 기존의 대규모 언어모델이 사전학습에서 보았던 사실을 반영하여 생성하는 답변이 실제 검색 기반 답변 시스템에서의 능력을 제대로 평가할 수 없다는 문제를 해결하고자 한다. 제안된 KFREB는 검색기반 대규모 언어모델의 실제 서비스 케이스를 고려하여 장문 문서, 두 개의 정답을 포함한 골드 문서, 한 개의 골드 문서와 유사 방해 문서 키워드 유무, 그리고 문서 간 상호 참조를 요구하는 상호참조 멀티홉 리즈닝 경우 등에 대한 평가 케이스를 제공하며, 이를 통해 대규모 언어모델의 적절한 선택과 실제 서비스 활용에 대한 인사이트를 제공할 수 있을 것이다.

  • PDF

유전 알고리즘 기반의 비정상 행위 탐지를 위한 특징선택 (Feature Selection for Anomaly Detection Based on Genetic Algorithm)

  • 서재현
    • 한국융합학회논문지
    • /
    • 제9권7호
    • /
    • pp.1-7
    • /
    • 2018
  • 데이터 전처리 기법 중 하나인 특징 선택은 대규모 데이터셋을 다루는 다양한 응용분야에서 주요 연구 분야 중 하나로 각광받고 있다. 특징 선택은 패턴 인식, 기계학습 및 데이터 마이닝에서 사용됐고, 최근에는 텍스트 분류, 이미지 검색, 침입 탐지 및 게놈 분석과 같은 다양한 분야에 널리 적용되고 있다. 제안 방법은 메타 휴리스틱 알고리즘 중의 하나인 유전 알고리즘을 기반으로 한다. 특징 부분 집합을 찾는 방법은 크게 필터(filter) 방법과 래퍼(wrapper) 방법이 있는데, 본 연구에서는 최적의 특징 부분 집합을 찾기 위해 실제 분류기를 사용한 평가를 하는 래퍼 방법을 사용한다. 실험에 사용한 훈련 데이터셋은 클래스 불균형이 심하여 희소클래스에 대한 분류 성능을 높이기 어렵다. SMOTE 기법을 적용한 훈련 데이터셋을 사용하여 특징 선택을 하고 다양한 기계학습 알고리즘을 사용하여 선택한 특징들의 성능을 평가한다.

Pointer-Generator Networks를 이용한 cQA 시스템 질문 요약 (Pointer-Generator Networks for Community Question Answering Summarization)

  • 김원우;김선훈;장헌석;강인호;박광현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.126-131
    • /
    • 2018
  • cQA(Community-based Question Answering) 시스템은 사용자들이 질문을 남기고 답변을 작성하는 시스템이다. cQA는 사용자의 편의를 위해 기존의 축적된 질문을 검색하거나 카테고리로 분류하는 기능을 제공한다. 질문의 길이가 길 경우 검색이나 카테고리 분류의 정확도가 떨어지는 한계가 있는데, 이를 극복하기 위해 cQA 질문을 요약하는 모델을 구축할 필요가 있다. 하지만 이러한 모델을 구축하려면 대량의 요약 데이터를 확보해야 하는 어려움이 존재한다. 본 논문에서는 이러한 어려움을 극복하기 위해 cQA의 질문 제목, 본문으로 데이터를 확보하고 필터링을 통해 요약 데이터 셋을 만들었다. 또한 본문의 대표 단어를 이용하여 추상 요약을 하기 위해 딥러닝 기반의 Pointer-generator model을 사용하였다. 실험 결과, 기존의 추출 요약 방식보다 딥러닝 기반의 추상 요약 방식의 성능이 더 좋았으며 Pointer-generator model이 보다 좋은 성능을 보였다.

  • PDF

Poly-encoder기반의 COVID-19 질의 응답 태스크 (Poly-encoder based COVID-19 Question and Answering with Task Adaptation)

  • 이설화;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.188-191
    • /
    • 2020
  • 본 연구는 COVID-19 질의 응답 태스크를 위한 Poly-encoder 기반의 태스크를 제안하였다. COVID-19 질의 응답 시스템은 사람들에게 최신 정보에 대해 빠르고 신뢰성이 높은 정보를 전달하는 특성을 가져야한다. 검색 기반 질의 응답 시스템은 pairwise 연산을 기반으로 수행되는데, Poly-encoder는 사전 학습된 트랜스포머(transformer)기반의 pairwise 연산 방법론 중 기존 Cross-encoder와 Bi-encoder보다 실사용 및 성능이 뛰어남을 보였다 [1]. 특히, Poly-encoder는 정확도가 높으면서도 빠른 응답속도를 가지며 검색기반의 각종 태스크에서 좋은 성능을 보였다. 따라서 본 연구는 COVID-19를 위한 Poly-encoder기반의 질의 응답 태스크를 위하여 기존 질의 응답 태스크와 페르소나 기반의 질의 응답 태스크로 두 가지 유형의 태스크를 생성하여 모델을 학습하였다. 또한 신뢰성 있는 리소스정보로부터 모델에 최신 정보 반영을 위하여 자동 크롤러를 구축하여 데이터를 수집하였다. 마지막으로 전문가를 통한 데이터셋을 구축하여 질문-응답과 질의어-질문에 대한 모델 검증을 수행하였다.

  • PDF

랜드마크 이미지 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안 연구 (A Study on Designing Metadata Standard for Building AI Training Dataset of Landmark Images)

  • 김진묵
    • 한국문헌정보학회지
    • /
    • 제54권2호
    • /
    • pp.419-434
    • /
    • 2020
  • 본 연구의 목적은 랜드마크 이미지의 AI 학습용 데이터 구축을 위한 메타데이터 표준 설계 방안을 제시하기 위함이다. 이를 위해, 이미지 검색시스템의 종류와 각각의 색인 방식에 관한 최신 기술 현황을 포괄적으로 조사하여 분석하고, AI 머신러닝을 적용한 랜드마크 인식에 필수적인 학습용 공개 데이터셋과 이미지 객체 인식에 관한 기계학습 도구를 조사하였다. 이를 통해, 랜드마크 이미지 AI 학습용 데이터에 최적화된 메타데이터 요소를 선정하고 각각의 요소에 대한 입력 데이터를 정의하였다. 결론 및 제언에서는 랜드마크 인식을 활용한 추천시스템을 포함한 응용서비스 개발 방안을 논의하였다.

이차원 퓨리에 변환의 크기와 위상을 이용한 커버곡 검색 (Cover song search based on magnitude and phase of the 2D Fourier transform)

  • 서진수
    • 한국음향학회지
    • /
    • 제37권6호
    • /
    • pp.518-524
    • /
    • 2018
  • 라이브 음악 또는 리메이크를 통해서 재발매된 음악을 원곡의 커버곡이라 부른다. 본 논문은 고속 커버곡 검색을 위한 특징 축약을 위해 2차원 퓨리에 변환을 이용하는 방법을 연구하였다. 이차원 퓨리에 변환은 조변화에 대해서 불변성을 가지고 있으므로, 커버곡 검색을 위한 특징 축약 방법으로 적합하다. 기존 퓨리에 변환 방법에서는 크기값 만을 활용하였으나, 본 논문에서는 인접한 크로마 블록은 같은 조변화를 가진다는 가정하에 위상 정보를 추가로 활용하는 방법을 제안하였다. 두 가지 커버곡 실험 데이터셋에서 성능 비교를 수행하였으며, 제안된 방법이 기존 방법에 비해서 우수한 커버곡 검색 정확도를 보임을 확인하였다.

검색 모델 성능 향상을 위한 Hard Negative 추출 및 False Negative 문제 완화 방법 (Improving Dense Retrieval Performance by Extracting Hard Negative and Mitigating False Negative Problem)

  • 박성흠;김홍진;황금하;권오욱;김학수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.366-371
    • /
    • 2023
  • 신경망 기반의 검색 모델이 활발히 연구됨에 따라 효과적인 대조학습을 위한 다양한 네거티브 샘플링 방법이 제안되고 있다. 대표적으로, ANN전략은 하드 네거티브 샘플링 방법으로 질문에 대해 검색된 후보 문서들 중에서 정답 문서를 제외한 상위 후보 문서를 네거티브로 사용하여 검색 모델의 성능을 효과적으로 개선시킨다. 하지만 질문에 부착된 정답 문서를 통해 후보 문서를 네거티브로 구분하기 때문에 실제로 정답을 유추할 수 있는 후보 문서임에도 불구하고 네거티브로 분류되어 대조학습을 진행할 수 있다는 문제점이 있다. 이러한 가짜 네거티브 문제(False Negative Problem)는 학습과정에서 검색 모델을 혼란스럽게 하며 성능을 감소시킨다. 본 논문에서는 False Negative Problem를 분석하고 이를 완화시키기 위해 가짜 네거티브 분류기(False Negative Classifier)를 소개한다. 실험은 오픈 도메인 질의 응답 데이터셋인 Natural Question에서 진행되었으며 실제 False Negative를 확인하고 이를 판별하여 기존 성능보다 더 높은 성능을 얻을 수 있음을 보여준다.

  • PDF

텐서공간모델 기반 시멘틱 검색 기법 (A Tensor Space Model based Semantic Search Technique)

  • 홍기주;김한준;장재영;전종훈
    • 한국전자거래학회지
    • /
    • 제21권4호
    • /
    • pp.1-14
    • /
    • 2016
  • 시멘틱 검색은 검색 사용자의 인지적 노력을 최소화하면서 사용자 질의의 문맥을 이해하여 의미에 맞는 문서를 정확히 찾아주는 기술이다. 아직 시멘틱 검색 기술은 온톨로지 또는 시멘틱 메타데이터 구축의 난제를 갖고 있으며 상용화 사례도 매우 미흡한 실정이다. 본 논문은 기존 시멘틱 검색 엔진의 한계를 극복하기 위하여 이전 연구에서 고안한 위키피디아 기반의 시멘틱 텐서공간모델을 활용하여 새로운 시멘틱 검색 기법을 제안한다. 제안하는 시멘틱 기법은 문서 집합에 출현하는 '단어'가 텐서공간모델에서 '문서-개념'의 2차 텐서(행렬), '개념'은 '문서-단어'의 2차 텐서로 표현된다는 성질을 이용하여 시멘틱 검색을 위해 요구되는 온톨로지 구축의 필요성을 없앤다. 그럼에도 불구하고, OHSUMED, SCOPUS 데이터셋을 이용한 성능평가를 통해 제안 기법이 벡터공간모델에서의 기존 검색 기법보다 우수함을 보인다.

기계학습을 이용한 동작인식 동영상 검색시스템 제안 (A Proposal of Motion Recognition-based Video Search System using Machine Learning)

  • 서원성;이강희
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.463-464
    • /
    • 2019
  • 본 논문은 기계학습을 기반으로 아두이노와 시리얼통신을 통한 사용자의 동작인식을 이용해 보다 간단하게 인터넷상의 원하는 동영상을 찾을 수 있는 검색시스템을 제작하고자 하였다. 이 검색시스템은 Python을 기반으로 SVM(Support Vector Machine)을 이용한 패턴 분류를 사용하였으며 이를 통해 사용자의 동작을 입력받아 문자를 예측 할 수 있다. 사용자는 이 검색시스템을 사용하기 위하여 우선 문자에 대한 사용자의 동작입력을 통해 학습 데이터 셋을 만들어야 하며 그것을 SVM을 이용하여 학습 모델과 식별자를 만들고, 만들어진 분류기를 통하여 동작인식을 바탕으로 문자의 결과를 예측 할 수 있다. 최종적으로 사용자의 동작인식을 거쳐 만들어진 문자열을 이용해 인터넷 동영상 사이트인 Youtube를 통해 웹 크롤링하여 문자열과 관련 있는 동영상을 찾아준다.

  • PDF

Key-Value Solid State Device 기반의 저장 및 검색 아키텍처 (Storage and Retrieval Architecture based on Key-Value Solid State Device)

  • 순위샹;이용주
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.45-52
    • /
    • 2020
  • 본 논문에서는 저장 및 검색 성능과 보안을 고려하여 key-value 형태의 SSD를 활용한 RDF 데이터 저장 및 검색 문제에 대한 해결책을 제안한다. Key-value SSD를 사용한 RDF 데이터 셋으로 부터 논리 관계와 실제 값을 분리하기 위한 2단계 압축 알고리즘을 제안한다. 이는 압축 및 저장 성능뿐만 아니라 보안도 향상시킨다. 우리는 또한 검색 성능 향상과 병합정렬 조인 알고리즘 구현을 위한 R∗-tree 기반 하이브리드 검색 구조를 제안했으며, R∗-tree 검색 효율성에 영향을 미치는 요인들에 대해 설명한다. 논문에서 제안된 방식은 기존의 압축 및 저장 그리고 검색 접근 방식보다 저장 공간을 적게 차지하면서 더 빠른 결과를 얻을 수 있으며, 다양성, 유연성, 그리고 보안 측면에서 더 우수한 경쟁력을 가진다.