Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.641-643
/
1999
많은 처리시간을 요구하는 대규모 3차원 데이터의 영사화(대규모 볼륨렌더링)에서는 병렬처리가 반드시 요구된다. 대규모 볼륨렌더링의 처리시간은 크게 데이터입력 시간과 입력된 데이터의 영상화(연산) 시간으로 구성된다. 따라서 데이터 입력 과정과 연산 과정 모두를 병렬화할 필요가 있다. 입출력 병렬화 및 알고리즘 병렬화는 각각 독립적으로 적용가능하다. 본 논문에서는 (1)순차 볼륨렌더링, (2)병렬연산 기반 볼륨렌더링, (3)병렬입출력 기반 볼륨렌더링, (4) 병렬연산 및 병렬입출력 기반 볼륨렌더링 등 네 가지 경우를 각각 구현하여 성능을 비교하였다. 실험결과에서는 병렬연산 및 병렬 입출력이 동시에 적용되는 (4)가 가장 좋은 성능을 보이는 것으로 나타났다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2013.06a
/
pp.117-118
/
2013
본 논문에서는 HEVC (High Efficiency Video Coding) SAO (Sample Adaptive Offset)의 병렬화 성능을 비교한다. HEVC 의 참조 소프트웨어인 HM-10.0 에서는 SAO 수행 과정의 연산량 및 메모리 접근을 최소화하고 카테고리 계산 과정에서 SAO 수행 전의 픽셀값을 사용하기 위해서 라인 버퍼를 사용한다. 그러나 이러한 라인버퍼의 사용은 SAO 에 대해 데이터-레벨의 병렬화를 적용하기 어렵게 만드는 주요 요인이다. 본 논문에서는 HEVC 디블록킹 필터가 적용된 픽쳐를 추가 메모리에 복사하는 구현 방식과 HM-10.0 의 SAO 구현 방식 각각에 대해 데이터-레벨 병렬화를 적용하고 각각의 성능을 비교 분석하였다. 실험 결과, HEVC 디블록킹 필터가 적용된 픽쳐를 추가 메모리에 복사하는 구현 방식은 데이터-레벨 병렬화의 구현은 쉽지만, 디블록킹 필터링 된 픽쳐를 추가 메모리에 복사하는 부분 때문에 HM-10.0 기반의 병렬화보다 복호화 성능이 저하될 수 있음을 확인하였다. 이에 반해 CTU 의 행 단위로 병렬 수행될 영역을 분할하는 방식은 구현의 용이성과 병렬화 성능을 동시에 얻을 수 있음을 확인하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.359-360
/
2016
본 논문에서는 초고화질의 비디오 실시간 복호화를 위해 HEVC(High Efficiency Video Coding)에서 지원하는 병렬화 기술인 Slice와 Tile 기술을 이용하여 초고해상도 영상에 대한 복호화기 병렬화 성능을 비교한다. Slice와 Tile은 분할 데이터간 의존성이 존재하지 않으므로 분할된 데이터를 다중 스레드에 할당하여 데이터-레벨 병렬화를 수행하였다. 실험 결과에서는 병렬화된 복호화기 성능이 기존 순차 복호화기에 비해 최대 2.08배 고속화 되었고, 분할 데이터 수가 증가하여도 화질 손실이 거의 없는 결과를 보인다.
KIPS Transactions on Computer and Communication Systems
/
v.8
no.10
/
pp.231-238
/
2019
Analyzing next-generation genome sequencing data in a conventional way using single server may take several tens of hours depending on the data size. However, in order to cope with emergency situations where the results need to be known within a few hours, it is required to improve the performance of a single genome analysis. In this paper, we propose a parallelized method for pre-processing genome sequence data which can reduce the analysis time by utilizing the big data technology and the highperformance computing cluster which is connected to the high-speed network and shares the parallel file system. For the reliability of analytical data, we have chosen a strategy to parallelize the existing analytical tools and algorithms to the new environment. Parallelized processing, data distribution, and parallel merging techniques have been developed and performance improvements have been confirmed through experiments.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.50-53
/
2018
차세대 염기서열 분석법이 생성한 유전체 원시 데이터를 기존의 방식대로 하나의 서버에서 분석하기 위해서는 수십 시간이 필요할 수 있고 이러한 시간을 최대한 줄여야 하는 응급 상황도 존재한다. 따라서 본 연구에서는 고속의 네트워크로 연결되고 병렬 파일 시스템을 공유하는 서버 클러스터를 활용하여 분석 시간을 크게 단축 시킬 수 있는 유전체 데이터 분석의 전처리 프로세스의 병렬화 방법을 제안한다. 기존의 검증된 분석도구를 기반으로 프로세스의 병렬화, 데이터의 분배 및 병렬 병합 기법을 개발하였고 실험을 통해 성능을 향상 시킬 수 있음을 증명하였다.
Proceedings of the Korean Information Science Society Conference
/
2012.06a
/
pp.431-433
/
2012
스파스 분석(Sparse analysis)은 프로그램의 데이터 의존관계(Data dependency)에 따라 필요한 정보를 필요한 부위와 시점으로 바로 보냄으로써 분석을 수행한다. 이 데이터 의존관계의 성질을 이용하면 프로그램 분석을 효율적으로 병렬화 할 수 있는 여지가 생긴다. 이 논문에서는 데이터 의존 관계를 이용하여 스파스 분석을 병렬화 하는 방법을 제시한다. 9개 오픈소스를 통해 실험해본 결과, 프로그램에 따라 6~37%, 평균적으로는 24% 가량 속도가 향상되었다.
Proceedings of the Korean Information Science Society Conference
/
2001.04a
/
pp.91-93
/
2001
볼륨 렌더링(Volume Rendering)은 과학, 의학, 공학 등의 분야에서 3차원 볼륨 데이터(Volume Date)를 효과적으로 시각화(Visualization)하는 목적으로 널리 사용되고 있으며 고화질 영상 요구로 인해 3차원 볼륨 데이터의 크기는 점차 대용량화되어 가는 추세이다. 이러한 대용량 데이터의 고성능 처리를 위해서는 병렬입출력이 필수적이다. 본 논문에서는 병렬볼륨 렌더링에 최적화된 병렬화일시스템 PBS(Parallel Block Server)을 제안한다. PBS는 고성능 입출력 제공을 위해서 데이터입출력에 대한 응용 프로그램의 집적 통제를 위한 다양한 기능을 제공하도록 설계되어 있다. 이러한 직접통제의 단점인 복잡한 인터페이스 문제를 해결하기 위해서 볼륨 렌더링에 최적화된 데이터 입출력 전략을 자동화시킨 PBS 기반 라이브러리 VRPIO(Volume Rendering Parallel Input Output)를 제공한다.
Various parallel processing R packages are used for fast processing and the analysis of big data. Parallel processing is used when the work can be decomposed into tasks that are non-interdependent. In some cases, each task decomposed for parallel processing can also be decomposed into non-interdependent subtasks. We have to choose whether to parallelize the decomposed tasks in the first step or to parallelize the subtasks in the second step when facing nested parallelism situations. This choice has a significant impact on the speed of computation; consequently, it is important to understand the nature of the work and decide where to do the parallel processing. In this paper, we provide an idea of how to apply parallel computing effectively to problems by illustrating how to select a parallelism point for the bandwidth selection of nonparametric regression.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.237-239
/
2016
본 논문에서는 HEVC (High Efficiency Video Coding) 복호화기의 SAO (Sample Adaptive Offset)를 효율적으로 병렬화하기 위한 방법을 제안한다. HEVC 는 주관적 화질 향상 및 압축 효율 향상을 위해 디블록킹 필터 (de-blocking filter)와 샘플 적응적 오프셋 (SAO)이라는 두 가지 인-루프 필터를 사용한다. 두 종류의 인-루프 필터의 사용은 HEVC 복호화기의 복잡도를 증가시키는 요인이며, 인-루프 필터에 데이터레벨 병렬화를 적용하여 고속으로 복호화를 수행할 수 있다. 본 논문에서는 SAO 의 병렬화를 위해 CTU (Coding Tree Unit)의 행 단위로 병렬화를 수행함으로써, 병렬화로 인한 추가적으로 발생하는 라인 버퍼 사용을 줄여 SAO 병렬화 효율을 향상시켰다. 실험결과 제안하는 SAO 병렬화 방법을 사용하여 균등분할 SAO 병렬화 방법에 비해 91%의 속도를 향상시켰다.
The objective of this paper is to implement parallel multi-layer ANN(Artificial Neural Network) simulator based on the mobile agent system which is executed in parallel in the virtual parallel distributed computing environment. The Multi-Layer Neural Network is classified by training session, training data layer, node, md weight in the parallelization-level. In this study, We have developed and evaluated the simulator with which it is feasible to parallel the ANN in the training session and training data parallelization because these have relatively few network traffic. In this results, we have verified that the performance of parallelization is high about 3.3 times in the training session and training data. The great significance of this paper is that the performance of ANN's execution on virtual parallel computer is similar to that of ANN's execution on existing super-computer. Therefore, we think that the virtual parallel computer can be considerably helpful in developing the neural network because it decreases the training time which needs extra-time.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.