• Title/Summary/Keyword: 데이터베이스 압축

Search Result 161, Processing Time 0.024 seconds

IRFP-tree: Intersection Rule Based FP-tree (IRFP-tree(Intersection Rule Based FP-tree): 메모리 효율성을 향상시키기 위해 교집합 규칙 기반의 패러다임을 적용한 FP-tree)

  • Lee, Jung-Hun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.3
    • /
    • pp.155-164
    • /
    • 2016
  • For frequency pattern analysis of large databases, the new tree-based frequency pattern analysis algorithm which can compensate for the disadvantages of the Apriori method has been variously studied. In frequency pattern tree, the number of nodes is associated with memory allocation, but also affects memory resource consumption and processing speed of the growth. Therefore, reducing the number of nodes in the tree is very important in the frequency pattern mining. However, the absolute criteria which need to order the transaction items for construction frequency pattern tree has lowered the compression ratio of the tree nodes. But most of the frequency based tree construction methods adapted the absolute criteria. FP-tree is typically frequency pattern tree structure which is an extended prefix-tree structure for storing compressed frequent crucial information about frequent patterns. For construction the tree, all the frequent items in different transactions are sorted according to the absolute criteria, frequency descending order. CanTree also need to absolute criteria, canonical order, to construct the tree. In this paper, we proposed a novel frequency pattern tree construction method that does not use the absolute criteria, IRFP-tree algorithm. IRFP-tree(Intersection Rule based FP-tree). IRFP-tree is constituted with the new paradigm of the intersection rule without the use of the absolute criteria. It increased the compression ratio of the tree nodes, and reduced the tree construction time. Our method has the additional advantage that it provides incremental mining. The reported test result demonstrate the applicability and effectiveness of the proposed approach.

Discovering Association Rules using Item Clustering on Frequent Pattern Network (빈발 패턴 네트워크에서 아이템 클러스터링을 통한 연관규칙 발견)

  • Oh, Kyeong-Jin;Jung, Jin-Guk;Ha, In-Ay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.1-17
    • /
    • 2008
  • Data mining is defined as the process of discovering meaningful and useful pattern in large volumes of data. In particular, finding associations rules between items in a database of customer transactions has become an important thing. Some data structures and algorithms had been proposed for storing meaningful information compressed from an original database to find frequent itemsets since Apriori algorithm. Though existing method find all association rules, we must have a lot of process to analyze association rules because there are too many rules. In this paper, we propose a new data structure, called a Frequent Pattern Network (FPN), which represents items as vertices and 2-itemsets as edges of the network. In order to utilize FPN, We constitute FPN using item's frequency. And then we use a clustering method to group the vertices on the network into clusters so that the intracluster similarity is maximized and the intercluster similarity is minimized. We generate association rules based on clusters. Our experiments showed accuracy of clustering items on the network using confidence, correlation and edge weight similarity methods. And We generated association rules using clusters and compare traditional and our method. From the results, the confidence similarity had a strong influence than others on the frequent pattern network. And FPN had a flexibility to minimum support value.

  • PDF

Study of Improvement of Search Range Compression Method of VP-tree for Video Indexes (영상 색인용 VP-tree의 검색 범위 압축법의 개선에 관한 연구)

  • Park, Gil-Yang;Lee, Samuel Sang-Kon;Hwang, Jea-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.2
    • /
    • pp.215-225
    • /
    • 2012
  • In multimedia database, a multidimensional space-based indexing has been used to increase search efficiency. However, this method is inefficient in terms of ubiquity because it uses Euclidean distance as a scale of distance calculation. On the contrary, a metric space-based indexing method, in which metric axiom is prerequisite is widely available because a metric scale other than Euclidean distance could be used. This paper is attempted to propose a way of improving VP-tree, one of the metric space indexing methods. The VP-tree calculates the distance with an object which is ultimately linked to the a leaf node depending on the node fit for the search range from a root node and examines if it is appropriate with the search range. Because search speed decreases as the number of distance calculations at the leaf node increases, however, this paper has proposed a method which uses the latest interface on query object as the base point of trigonometric inequality for improvement after focusing on the trigonometric inequality-based range compression method in a leaf node. This improvement method would be able to narrow the search range and reduce the number of distance calculations. According to a system performance test using 10,000 video data, the new method reduced search time for similar videos by 5-12%, compared to a conventional method.

Strength and CO2 Reduction of Fiber-Reinforced Cementitious Composites with Recycled Materials (자원순환형 재료를 사용한 섬유보강 시멘트 복합체(FRCCs)의 강도 및 CO2 저감에 관한 연구)

  • Lee, Jong-Won;Kim, Sun-Woo;Park, Wan-Shin;Jang, Young-Il;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.4
    • /
    • pp.379-387
    • /
    • 2017
  • The objective of this study is to develop sustainable PVA fiber-reinforced cementitious composites (FRCCs) that could exhibit comparable strength level to normal PVA FRCCs with no recycled materials. To evaluate mechanical properties of the FRCCs, compressive, flexural and direct tensile tests were conducted. In addition to the test, to calculate amount of carbon dioxide ($CO_2$) emission at the stage of manufacturing the FRCCs, life cycle inventory data base (LCI DB) were referenced from domestic and Japan. From the test results, the mechanical properties such as compressive, flexural and direct tensile strengths were decreased as the replacement ratio of recycled materials increased. And it was determined that the amount of $CO_2$ emission was reduced for the specimens with higher water-binder ratio (W/B) and replacement ratios. It was also found that binder intensity ($B_i$) value was higher as replacement ratio of fly ash (FA) increased. This result means that larger amount of FA is need to deliver one unit of a given performance indicator (1 MPa of strength) of FRCCs compared to that of ordinary portland cement (OPC). As a result, it could be concluded that FRCCs with W/B 45% replaced by FA 25% and recycled sand (RS) 25% is desirable for both target performance and $CO_2$ emission.

Data Processing Architecture for Cloud and Big Data Services in Terms of Cost Saving (비용절감 측면에서 클라우드, 빅데이터 서비스를 위한 대용량 데이터 처리 아키텍쳐)

  • Lee, Byoung-Yup;Park, Jae-Yeol;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.5
    • /
    • pp.570-581
    • /
    • 2015
  • In recent years, many institutions predict that cloud services and big data will be popular IT trends in the near future. A number of leading IT vendors are focusing on practical solutions and services for cloud and big data. In addition, cloud has the advantage of unrestricted in selecting resources for business model based on a variety of internet-based technologies which is the reason that provisioning and virtualization technologies for active resource expansion has been attracting attention as a leading technology above all the other technologies. Big data took data prediction model to another level by providing the base for the analysis of unstructured data that could not have been analyzed in the past. Since what cloud services and big data have in common is the services and analysis based on mass amount of data, efficient operation and designing of mass data has become a critical issue from the early stage of development. Thus, in this paper, I would like to establish data processing architecture based on technological requirements of mass data for cloud and big data services. Particularly, I would like to introduce requirements that must be met in order for distributed file system to engage in cloud computing, and efficient compression technology requirements of mass data for big data and cloud computing in terms of cost-saving, as well as technological requirements of open-source-based system such as Hadoop eco system distributed file system and memory database that are available in cloud computing.

Design of Moving Picture Retrieval System using Scene Change Technique (장면 전환 기법을 이용한 동영상 검색 시스템 설계)

  • Kim, Jang-Hui;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.8-15
    • /
    • 2007
  • Recently, it is important to process multimedia data efficiently. Especially, in case of retrieval of multimedia information, technique of user interface and retrieval technique are necessary. This paper proposes a new technique which detects cuts effectively in compressed image information by MPEG. A cut is a turning point of scenes. The cut-detection is the basic work and the first-step for video indexing and retrieval. Existing methods have a weak point that they detect wrong cuts according to change of a screen such as fast motion of an object, movement of a camera and a flash. Because they compare between previous frame and present frame. The proposed technique detects shots at first using DC(Direct Current) coefficient of DCT(Discrete Cosine Transform). The database is composed of these detected shots. Features are extracted by HMMD color model and edge histogram descriptor(EHD) among the MPEG-7 visual descriptors. And detections are performed in sequence by the proposed matching technique. Through this experiments, an improved video segmentation system is implemented that it performs more quickly and precisely than existing techniques have.

Texture Mapping of a Bridge Deck Using UAV Images (무인항공영상을 이용한 교량 상판의 텍스처 매핑)

  • Nguyen, Truong Linh;Han, Dongyeob
    • Journal of Digital Contents Society
    • /
    • v.18 no.6
    • /
    • pp.1041-1047
    • /
    • 2017
  • There are many methods for surveying the status of a road, and the use of unmanned aerial vehicle (UAV) photo is one such method. When the UAV images are too large to be processed and suspected to be redundant, a texture extraction technique is used to transform the data into a reduced set of feature representations. This is an important task in 3D simulation using UAV images because a huge amount of data can be inputted. This paper presents a texture extraction method from UAV images to obtain high-resolution images of bridges. The proposed method is in three steps: firstly, we use the 3D bridge model from the V-World database; secondly, textures are extracted from oriented UAV images; and finally, the extracted textures from each image are blended. The result of our study can be used to update V-World textures to a high-resolution image.

Video retrieval method using non-parametric based motion classification (비-파라미터 기반의 움직임 분류를 통한 비디오 검색 기법)

  • Kim Nac-Woo;Choi Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.1-11
    • /
    • 2006
  • In this paper, we propose the novel video retrieval algorithm using non-parametric based motion classification in the shot-based video indexing structure. The proposed system firstly gets the key frame and motion information from each shot segmented by scene change detection method, and then extracts visual features and non-parametric based motion information from them. Finally, we construct real-time retrieval system supporting similarity comparison of these spatio-temporal features. After the normalized motion vector fields is created from MPEG compressed stream, the extraction of non-parametric based motion feature is effectively achieved by discretizing each normalized motion vectors into various angle bins, and considering a mean, a variance, and a direction of these bins. We use the edge-based spatial descriptor to extract the visual feature in key frames. Experimental evidence shows that our algorithm outperforms other video retrieval methods for image indexing and retrieval. To index the feature vectors, we use R*-tree structures.

Improvement of Retrieval Performance Using Adaptive Weighting of Key Frame Features (키 프레임 특징들에 적응적 가중치 부여를 이용한 검색 성능 개선)

  • Kim, Kang-Wook
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.1
    • /
    • pp.26-33
    • /
    • 2014
  • Video retrieval and indexing are performed by comparing feature similarities between key frames in shot after detecting a scene change and extracting key frames from the shot. Typical image features such as color, shape, and texture are used in content-based video and image retrieval. Many approaches for integrating these features have been studied. However, the issue of these approaches is how to appropriately assign weighting of key frame features at query time. Therefore, we propose a new video retrieval method using adaptively weighted image features. We performed computer simulations in test databases which consist of various kinds of key frames. The experimental results show that the proposed method has better performance than previous works in respect to several performance evaluations such as precision vs. recall, retrieval efficiency, and ranking measure.

Statistical analysis of NTNU test results to predict rock TBM performance (TBM 굴진성능 예측을 위한 NTNU 시험결과의 분석)

  • Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.3
    • /
    • pp.243-260
    • /
    • 2011
  • To predict TBM performance in design stage is indispensable for its successful application. The NTNU model, one of the representative TBM performance prediction models uses two distinct parameters such as DRI and CLI obtained from three different tests on bored rock cores. Based on DRI and CLI, it is possible to predict TBM advance rate and cutter life in the NTNU model. In this study, NTNU testing methods and their related testing equipments were introduced to measure DRl and CLI for the NTNU model. Then, in order to derive their relationships, the two key parameters measured for 39 domestic rocks were compared with physico-mechanical properties of rock such as uniaxial compressive strength and quartz content. Lastly, the experimental results were also compared with NTNU database to verify their reliability.