• 제목/요약/키워드: 데이터논문

검색결과 41,610건 처리시간 0.066초

Research on soil composition measurement sensor configuration and UI implementation (토양 성분 측정 센서 구성 및 UI 구현에 관한 연구)

  • Ye Eun Park;Jin Hyoung Jeong;Jae Hyun Jo;Young Yoon Chang;Sang Sik Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • 제17권1호
    • /
    • pp.76-81
    • /
    • 2024
  • Recently, agricultural methods are changing from experience-based agriculture to data-based agriculture. Changes in agricultural production due to the 4th Industrial Revolution are largely occurring in three areas: smart sensing and monitoring, smart analysis and planning, and smart control. In order to realize open-field smart agriculture, information on the physical and chemical properties of soil is essential. Conventional physicochemical measurements are conducted in a laboratory after collecting samples, which consumes a lot of cost, labor, and time, so they are quickly measured in the field. Measurement technology that can do this is urgently needed. In addition, a soil analysis system that can be carried and moved by the measurer and used in Korea's rice fields, fields, and facility houses is needed. To solve this problem, our goal is to develop and commercialize software that can collect soil samples and analyze the information. In this study, basic soil composition measurement was conducted using soil composition measurement sensors consisting of hardness measurement and electrode sensors. Through future research, we plan to develop a system that applies soil sampling using a CCD camera, ultrasonic sensor, and sampler. Therefore, we implemented a sensor and soil analysis UI that can measure and analyze the soil condition in real time, such as hardness measurement display using a load cell and moisture, PH, and EC measurement display using conductivity.

A Foundational Study on Developing a Structural Model for AI-based Sentencing Prediciton Based on Violent Crime Judgment (인공지능기술 적용을 위한 강력범죄 판결문 기반 양형 예측 구조모델 개발 기초 연구)

  • Woongil Park;Eunbi Cho;Jeong-Hyeon Chang;Joo-chang Kim
    • Journal of Internet Computing and Services
    • /
    • 제25권1호
    • /
    • pp.91-98
    • /
    • 2024
  • With the advancement of ICT (Information and Communication Technology), searching for judgments through the internet has become increasingly convenient. However, predicting sentencing based on judgments remains a challenging task for individuals. This is because sentencing involves a complex process of applying aggravating and mitigating factors within the framework of legal provisions, and it often depends on the subjective judgment of the judge. Therefore, this research aimed to develop a model for predicting sentencing using artificial intelligence by focusing on structuring the data from judgments, making it suitable for AI applications. Through theoretical and statistical analysis of previous studies, we identified variables with high explanatory power for predicting sentencing. Additionally, by analyzing 50 legal judgments related to serious crimes that are publicly available, we presented a framework for extracting essential information from judgments. This framework encompasses basic case information, sentencing details, reasons for sentencing, the reasons for the determination of the sentence, as well as information about offenders, victims, and accomplices evident within the specific content of the judgments. This research is expected to contribute to the development of artificial intelligence technologies in the field of law in the future.

The Measurement Algorithm for Microphone's Frequency Character Response Using OATSP (OATSP를 이용한 마이크로폰의 주파수 특성 응답 측정 알고리즘)

  • Park, Byoung-Uk;Kim, Hack-Yoon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권2호
    • /
    • pp.61-68
    • /
    • 2007
  • The frequency response of a microphone, which indicates the frequency range that a microphone can output within the approved level, is one of the most significant standards used to measure the characteristics of a microphone. At present, conventional methods of measuring the frequency response are complicated and involve the use of expensive equipment. To complement the disadvantages, this paper suggests a new algorithm that can measure the frequency response of a microphone in a simple manner. The algorithm suggested in this paper generates the Optimized Aoshima's Time Stretched Pulse(OATSP) signal from a computer via a standard speaker and measures the impulse response of a microphone by convolution the inverse OATSP signal and the received by the microphone to be measured. Then, the frequency response of the microphone to be measured is calculated using the signals. The performance test for the algorithm suggested in the study was conducted through a comparative analysis of the frequency response data and the measures of frequency response of the microphone measured by the algorithm. It proved that the algorithm is suitable for measuring the frequency response of a microphone, and that despite a few errors they are all within the error tolerance.

Sentiment Analysis of News Based on Generative AI and Real Estate Price Prediction: Application of LSTM and VAR Models (생성 AI기반 뉴스 감성 분석과 부동산 가격 예측: LSTM과 VAR모델의 적용)

  • Sua Kim;Mi Ju Kwon;Hyon Hee Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • 제13권5호
    • /
    • pp.209-216
    • /
    • 2024
  • Real estate market prices are determined by various factors, including macroeconomic variables, as well as the influence of a variety of unstructured text data such as news articles and social media. News articles are a crucial factor in predicting real estate transaction prices as they reflect the economic sentiment of the public. This study utilizes sentiment analysis on news articles to generate a News Sentiment Index score, which is then seamlessly integrated into a real estate price prediction model. To calculate the sentiment index, the content of the articles is first summarized. Then, using AI, the summaries are categorized into positive, negative, and neutral sentiments, and a total score is calculated. This score is then applied to the real estate price prediction model. The models used for real estate price prediction include the Multi-head attention LSTM model and the Vector Auto Regression model. The LSTM prediction model, without applying the News Sentiment Index (NSI), showed Root Mean Square Error (RMSE) values of 0.60, 0.872, and 1.117 for the 1-month, 2-month, and 3-month forecasts, respectively. With the NSI applied, the RMSE values were reduced to 0.40, 0.724, and 1.03 for the same forecast periods. Similarly, the VAR prediction model without the NSI showed RMSE values of 1.6484, 0.6254, and 0.9220 for the 1-month, 2-month, and 3-month forecasts, respectively, while applying the NSI led to RMSE values of 1.1315, 0.3413, and 1.6227 for these periods. These results demonstrate the effectiveness of the proposed model in predicting apartment transaction price index and its ability to forecast real estate market price fluctuations that reflect socio-economic trends.

An Empirical Analysis of In-app Purchase Behavior in Mobile Games (모바일 게임 인앱구매에 영향을 주는 요인에 관한 연구)

  • Moonkyoung Jang;Changkeun Kim;Byungjoon Yoo
    • Information Systems Review
    • /
    • 제22권2호
    • /
    • pp.43-52
    • /
    • 2020
  • The mobile game industry has become the one of the fastest growing industries with its astonishing market size. Despite its industrial importance, a few studies empirically considered actual purchasing behavior in mobile games rather than the intention to purchase. Therefore, this paper investigates the key drivers of in-app purchase by analyzing the game-log dataset provided from a mobile game company in Korea. Specifically, the effects of goal-directed, habitual and social-interacted playing behavior are analyzed on in-app purchase. Furthermore, the recursive relationship with playing and purchasing behaviorsis also considered. The result shows that all suggested factors have positive impacts on in-app purchase in the current period. In addition, the effect of previous habitual playing has a positive impact, but the effect of social-interacted playing and in-app purchase in the previous period have negative impacts on in-app purchase of the current period. These findings can improve our understanding of the impact of game playing on in-app purchase in mobile games, and provide meaningful insights for researchers and practitioners.

A Study on Low-Light Image Enhancement Technique for Improvement of Object Detection Accuracy in Construction Site (건설현장 내 객체검출 정확도 향상을 위한 저조도 영상 강화 기법에 관한 연구)

  • Jong-Ho Na;Jun-Ho Gong;Hyu-Soung Shin;Il-Dong Yun
    • Tunnel and Underground Space
    • /
    • 제34권3호
    • /
    • pp.208-217
    • /
    • 2024
  • There is so much research effort for developing and implementing deep learning-based surveillance systems to manage health and safety issues in construction sites. Especially, the development of deep learning-based object detection in various environmental changes has been progressing because those affect decreasing searching performance of the model. Among the various environmental variables, the accuracy of the object detection model is significantly dropped under low illuminance, and consistent object detection accuracy cannot be secured even the model is trained using low-light images. Accordingly, there is a need of low-light enhancement to keep the performance under low illuminance. Therefore, this paper conducts a comparative study of various deep learning-based low-light image enhancement models (GLADNet, KinD, LLFlow, Zero-DCE) using the acquired construction site image data. The low-light enhanced image was visually verified, and it was quantitatively analyzed by adopting image quality evaluation metrics such as PSNR, SSIM, Delta-E. As a result of the experiment, the low-light image enhancement performance of GLADNet showed excellent results in quantitative and qualitative evaluation, and it was analyzed to be suitable as a low-light image enhancement model. If the low-light image enhancement technique is applied as an image preprocessing to the deep learning-based object detection model in the future, it is expected to secure consistent object detection performance in a low-light environment.

Optimal Sensor Placement for Improved Prediction Accuracy of Structural Responses in Model Test of Multi-Linked Floating Offshore Systems Using Genetic Algorithms (다중연결 해양부유체의 모형시험 구조응답 예측정확도 향상을 위한 유전알고리즘을 이용한 센서배치 최적화)

  • Kichan Sim;Kangsu Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제37권3호
    • /
    • pp.163-171
    • /
    • 2024
  • Structural health monitoring for ships and offshore structures is important in various aspects. Ships and offshore structures are continuously exposed to various environmental conditions, such as waves, wind, and currents. In the event of an accident, immense economic losses, environmental pollution, and safety problems can occur, so it is necessary to detect structural damage or defects early. In this study, structural response data of multi-linked floating offshore structures under various wave load conditions was calculated by performing fluid-structure coupled analysis. Furthermore, the order reduction method with distortion base mode was applied to the structures for predicting the structural response by using the results of numerical analysis. The distortion base mode order reduction method can predict the structural response of a desired area with high accuracy, but prediction performance is affected by sensor arrangement. Optimization based on a genetic algorithm was performed to search for optimal sensor arrangement and improve the prediction performance of the distortion base mode-based reduced-order model. Consequently, a sensor arrangement that predicted the structural response with an error of about 84.0% less than the initial sensor arrangement was derived based on the root mean squared error, which is a prediction performance evaluation index. The computational cost was reduced by about 8 times compared to evaluating the prediction performance of reduced-order models for a total of 43,758 sensor arrangement combinations. and the expected performance was overturned to approximately 84.0% based on sensor placement, including the largest square root error.

Dimensional Quality Assessment for Assembly Part of Prefabricated Steel Structures Using a Stereo Vision Sensor (스테레오 비전 센서 기반 프리팹 강구조물 조립부 형상 품질 평가)

  • Jonghyeok Kim;Haemin Jeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제37권3호
    • /
    • pp.173-178
    • /
    • 2024
  • This study presents a technique for assessing the dimensional quality of assembly parts in Prefabricated Steel Structures (PSS) using a stereo vision sensor. The stereo vision system captures images and point cloud data of the assembly area, followed by applying image processing algorithms such as fuzzy-based edge detection and Hough transform-based circular bolt hole detection to identify bolt hole locations. The 3D center positions of each bolt hole are determined by correlating 3D real-world position information from depth images with the extracted bolt hole positions. Principal Component Analysis (PCA) is then employed to calculate coordinate axes for precise measurement of distances between bolt holes, even when the sensor and structure orientations differ. Bolt holes are sorted based on their 2D positions, and the distances between sorted bolt holes are calculated to assess the assembly part's dimensional quality. Comparison with actual drawing data confirms measurement accuracy with an absolute error of 1mm and a relative error within 4% based on median criteria.

AutoML Machine Learning-Based for Detecting Qshing Attacks Malicious URL Classification Technology Research and Service Implementation (큐싱 공격 탐지를 위한 AutoML 머신러닝 기반 악성 URL 분류 기술 연구 및 서비스 구현)

  • Dong-Young Kim;Gi-Seong Hwang
    • Smart Media Journal
    • /
    • 제13권6호
    • /
    • pp.9-15
    • /
    • 2024
  • In recent trends, there has been an increase in 'Qshing' attacks, a hybrid form of phishing that exploits fake QR (Quick Response) codes impersonating government agencies to steal personal and financial information. Particularly, this attack method is characterized by its stealthiness, as victims can be redirected to phishing pages or led to download malicious software simply by scanning a QR code, making it difficult for them to realize they have been targeted. In this paper, we have developed a classification technique utilizing machine learning algorithms to identify the maliciousness of URLs embedded in QR codes, and we have explored ways to integrate this with existing QR code readers. To this end, we constructed a dataset from 128,587 malicious URLs and 428,102 benign URLs, extracting 35 different features such as protocol and parameters, and used AutoML to identify the optimal algorithm and hyperparameters, achieving an accuracy of approximately 87.37%. Following this, we designed the integration of the trained classification model with existing QR code readers to implement a service capable of countering Qshing attacks. In conclusion, our findings confirm that deriving an optimized algorithm for classifying malicious URLs in QR codes and integrating it with existing QR code readers presents a viable solution to combat Qshing attacks.

A Study on intent to use AI-enhanced development tools (AI 증강 개발 도구 사용의도에 관한 연구)

  • Hyun Ji Eun;Lee Seung Hwan;Gim Gwang Yong
    • Convergence Security Journal
    • /
    • 제24권2호
    • /
    • pp.89-104
    • /
    • 2024
  • This study is an empirical study to examine the factors that influence the intention to use artificial intelligence (AI) technology for SW engineering-related tasks, and the purpose of the study is to understand the key factors that influence the use in terms of AI augmentation characteristics and interactive UI/UX characteristics. For this purpose, a survey was conducted among information and communication workers who have experience in using AI-related technologies and the collected data was analyzed. The results of the empirical analysis showed that perceived usefulness was positively influenced by the factors of expertise, interestingness, realism, aesthetics, efficiency, and flexibility, and perceived ease of use was positively influenced by the factors of expertise, interestingness, realism, aesthetics, and flexibility. Variety had no effect on both perceived ease of use and perceived usefulness. Perceived ease of use had a significant effect on perceived immersion, which positively influenced intention to use. These findings are significant in that they provide an academic understanding of the factors that influence the use of AI-enhanced tools in SW engineering-related tasks such as application design, development, testing, and process automation, as well as practical directions for the creators of tools that provide AI-enhanced development services to develop user acquisition strategies.