• 제목/요약/키워드: 데이터기반 모델

검색결과 6,386건 처리시간 0.034초

미시적 교통 시뮬레이션을 활용한 LDM 기반 도로·교통정보 활성화 구간 변화에 따른 정보 이용 효율성 평가 (Evaluation of Road and Traffic Information Use Efficiency on Changes in LDM-based Electronic Horizon through Microscopic Simulation Model)

  • 김회경;정연식;박재형
    • 대한토목학회논문집
    • /
    • 제43권2호
    • /
    • pp.231-238
    • /
    • 2023
  • 자율주행을 위한 센서들이 인지할 수 있는 공간적 영역은 한계가 존재하기 때문에, 안전하고 효율적인 자율주행을 위해 LDM (Local Dynamic Map)과 같은 디지털 도로·교통정보의 보완적 활용을 제안하고 있다. 비록 자율주행 차량의 센서들로부터 수집되는 정보량에 비해 이러한 도로·교통정보의 양은 상대적으로 미미할 수 있지만, 자율주행 자동차(Autonomous Vehicle, AV)의 효율적 정보처리를 위해 도로·교통 정보의 효율적 관리는 불가피하다. 본 연구는 LDM 기반 정적 도로·교통정보의 활성화 구간(electronic horizon 혹은 e-horizon)의 확장에 따른 자율주행 차량의 정보 이용과 정보처리 시간의 효율성을 분석하고자 하였다. 분석을 위해 미시적 시뮬레이션 모델인 VISSIM과 VISSIMCOM을 적용하였다. 시뮬레이션을 위해 이질적 교통류(연속류, 단속류)는 물론 다양한 도로 기하구조가 포함된 부산광역시 주요 구들을 포함한 약 9 km × 13 km 영역을 선정하였다. 또한, 자율주행 차량에서 활용되는 LDM 정보는 ISO 22726-1 기반으로 구축된 자율주행 전용 정밀 지도(High-definition Map, HDM)를 참고하였다. 분석 결과, e-horizon 영역이 증가함에 따라 단속류 도로에서 짧은 링크들이 집중적으로 인식되고 링크 길이의 합이 증가하는 반면, 연속류 도로에서는 인식되는 링크의 개수는 상대적으로 적지만 소수의 긴 링크들이 인식됨에 따라 링크 길이의 합이 크게 나타나고 있다. 따라서, 본 연구는 저속의 단속류 도로에서는 12개 링크를 기준으로, 그리고 고속의 연속류 도로에서는 링크 길이의 합 10 km를 기준으로 HDM 데이터의 수집, 가공, 처리를 위한 e-horizon의 영역은 각각 600 m와 700 m가 가장 적절한 것으로 나타났다.

한국어 음소 단위 LSTM 언어모델을 이용한 문장 생성 (Korean Sentence Generation Using Phoneme-Level LSTM Language Model)

  • 안성만;정여진;이재준;양지헌
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.71-88
    • /
    • 2017
  • 언어모델은 순차적으로 입력된 자료를 바탕으로 다음에 나올 단어나 문자를 예측하는 모델로 언어처리나 음성인식 분야에 활용된다. 최근 딥러닝 알고리즘이 발전되면서 입력 개체 간의 의존성을 효과적으로 반영할 수 있는 순환신경망 모델과 이를 발전시킨 Long short-term memory(LSTM) 모델이 언어모델에 사용되고 있다. 이러한 모형에 자료를 입력하기 위해서는 문장을 단어 혹은 형태소로 분해하는 과정을 거친 후 단어 레벨 혹은 형태소 레벨의 모형을 사용하는 것이 일반적이다. 하지만 이러한 모형은 텍스트가 포함하는 단어나 형태소의 수가 일반적으로 매우 많기 때문에 사전 크기가 커지게 되고 이에 따라 모형의 복잡도가 증가하는 문제가 있고 사전에 포함된 어휘 외에는 생성이 불가능하다는 등의 단점이 있다. 특히 한국어와 같이 형태소 활용이 다양한 언어의 경우 형태소 분석기를 통한 분해과정에서 오류가 더해질 수 있다. 이를 보완하기 위해 본 논문에서는 문장을 자음과 모음으로 이루어진 음소 단위로 분해한 뒤 입력 데이터로 사용하는 음소 레벨의 LSTM 언어모델을 제안한다. 본 논문에서는 LSTM layer를 3개 또는 4개 포함하는 모형을 사용한다. 모형의 최적화를 위해 Stochastic Gradient 알고리즘과 이를 개선시킨 다양한 알고리즘을 사용하고 그 성능을 비교한다. 구약성경 텍스트를 사용하여 실험을 진행하였고 모든 실험은 Theano를 기반으로 하는 Keras 패키지를 사용하여 수행되었다. 모형의 정량적 비교를 위해 validation loss와 test set에 대한 perplexity를 계산하였다. 그 결과 Stochastic Gradient 알고리즘이 상대적으로 큰 validation loss와 perplexity를 나타냈고 나머지 최적화 알고리즘들은 유사한 값들을 보이며 비슷한 수준의 모형 복잡도를 나타냈다. Layer 4개인 모형이 3개인 모형에 비해 학습시간이 평균적으로 69% 정도 길게 소요되었으나 정량지표는 크게 개선되지 않거나 특정 조건에서는 오히려 악화되는 것으로 나타났다. 하지만 layer 4개를 사용한 모형이 3개를 사용한 모형에 비해 완성도가 높은 문장을 생성했다. 본 논문에서 고려한 어떤 시뮬레이션 조건에서도 한글에서 사용되지 않는 문자조합이 생성되지 않았고 명사와 조사의 조합이나 동사의 활용, 주어 동사의 결합 면에서 상당히 완성도 높은 문장이 발생되었다. 본 연구결과는 현재 대두되고 있는 인공지능 시스템의 기초가 되는 언어처리나 음성인식 분야에서 한국어 처리를 위해 다양하게 활용될 수 있을 것으로 기대된다.

자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가 (Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving)

  • 조문기;배경율
    • 지능정보연구
    • /
    • 제27권1호
    • /
    • pp.191-207
    • /
    • 2021
  • 오늘날 이동통신은 급증하는 데이터 수요에 대응하기 위해서 주로 속도 향상에 초점을 맞추어 발전해 왔다. 그리고 5G 시대가 시작되면서 IoT, V2X, 로봇, 인공지능, 증강 가상현실, 스마트시티 등을 비롯하여 다양한 서비스를 고객들에게 제공하기위한 노력들이 진행되고 있고 이는 우리의 삶의 터전과 산업 전반에 대한 환경을 바꿀 것으로 예상되고 되고 있다. 이러한 서비스를 제공하기위해서 고속 데이터 속도 외에도, 실시간 서비스를 위한 지연 감소 그리고 신뢰도 등이 매우 중요한데 5G에서는 최대 속도 20Gbps, 지연 1ms, 연결 기기 106/㎢를 제공함으로써 서비스 제공할 수 있는 기반을 마련하였다. 하지만 5G는 고주파 대역인 3.5Ghz, 28Ghz의 높은 주파수를 사용함으로써 높은 직진성의 빠른 속도를 제공할 수 있으나, 짧은 파장을 가지고 있어 도달할 수 있는 거리가 짧고, 회절 각도가 작아서 건물 등을 투과하지 못해 실내 이용에서 제약이 따른다. 따라서 기존의 통신망으로 이러한 제약을 벗어나기가 어렵고, 기반 구조인 중앙 집중식 SDN 또한 많은 노드와의 통신으로 인해 처리 능력에 과도한 부하가 발생하기 때문에 지연에 민감한 서비스 제공에 어려움이 있다. 그래서 자율 주행 중 긴급 상황이 발생할 경우 사용 가능한 지연 관련 트리 구조의 제어 기능이 필요하다. 이러한 시나리오에서 차량 내 정보를 처리하는 네트워크 아키텍처는 지연의 주요 변수이다. 일반적인 중앙 집중 구조의 SDN에서는 원하는 지연 수준을 충족하기가 어렵기 때문에 정보 처리를 위한 SDN의 최적 크기에 대한 연구가 이루어져야 한다. 그러므로 SDN이 일정 규모로 분리하여 새로운 형태의 망을 구성 해야하며 이러한 새로운 형태의 망 구조는 동적으로 변하는 트래픽에 효율적으로 대응하고 높은 품질의 유연성 있는 서비스를 제공할 수 있다. 이러한 SDN 구조 망에서 정보의 변경 주기, RTD(Round Trip Delay), SDN의 데이터 처리 시간은 지연과 매우 밀접한 상관관계를 가진다. 이 중 RDT는 속도는 충분하고 지연은 1ms 이하이기에 유의미한 영향을 주는 요인은 아니지만 정보 변경 주기와 SDN의 데이터 처리 시간은 지연에 크게 영향을 주는 요인이다. 특히, 5G의 다양한 응용분야 중에서 지연과 신뢰도가 가장 중요한 분야인 지능형 교통 시스템과 연계된 자율주행 환경의 응급상황에서는 정보 전송은 매우 짧은 시간 안에 전송 및 처리돼야 하는 상황이기때문에 지연이라는 요인이 매우 민감하게 작용하는 조건의 대표적인 사례라고 볼 수 있다. 본 논문에서는 자율 주행 시 응급상황에서 SDN 아키텍처를 연구하고, 정보 흐름(셀 반경, 차량의 속도 및 SDN의 데이터 처리 시간의 변화)에 따라 차량이 관련정보를 요청해야 할 셀 계층과의 상관관계에 대하여 시뮬레이션을 통하여 분석을 진행하였다.

Node2vec 그래프 임베딩과 Light GBM 링크 예측을 활용한 식음료 산업의 수출 후보국가 탐색 연구 (A Study on Searching for Export Candidate Countries of the Korean Food and Beverage Industry Using Node2vec Graph Embedding and Light GBM Link Prediction)

  • 이재성;전승표;서진이
    • 지능정보연구
    • /
    • 제27권4호
    • /
    • pp.73-95
    • /
    • 2021
  • 본 연구는 Node2vec 그래프 임베딩 방법과 Light GBM 링크 예측을 활용해 우리나라 식음료 산업의 미개척 수출 후보국가를 탐색한다. Node2vec은 네트워크의 공통 이웃 개수 등을 기반으로 하는 기존의 링크 예측 방법에 비해 상대적으로 취약하다고 알려져 있던 네트워크의 구조적 등위성 표현의 한계를 개선한 방법이다. 따라서 해당 방법은 네트워크의 커뮤니티 탐지와 구조적 등위성 모두에서 우수한 성능을 나타내는 것으로 알려져 있다. 이에 본 연구는 이상의 방법을 우리나라 식음료 산업의 국제 무역거래 정보에 적용했다. 이를 통해 해당 산업의 글로벌 가치사슬 관계에서 우리나라의 광범위한 마진 다각화 효과를 창출하는데 기여하고자 한다. 본 연구의 결과를 통해 도출된 최적의 예측 모델은 0.95의 정밀도와 0.79의 재현율을 기록하며 0.86의 F1 score를 기록해 우수한 성능을 나타냈다. 이상의 모델을 통해 도출한 우리나라의 잠재적 수출 후보국가들의 결과는 추가 조사를 통해 대부분 적절하게 나타난 것을 알 수 있었다. 이상의 내용을 종합하여 본 연구는 Node2vec과 Light GBM을 응용한 링크 예측 방법의 실무적 활용성에 대해 시사할 수 있었다. 그리고 모델을 학습하며 링크 예측을 보다 잘 수행할 수 있는 가중치 업데이트 전략에 대해서도 유용한 시사점을 도출할 수 있었다. 한편, 본 연구는 그래프 임베딩 기반의 링크 예측 관련 연구에서 아직까지 많이 수행된 적 없는 무역거래에 이를 적용했기에 정책적 활용성도 갖고 있다. 본 연구의 결과는 최근 미중 무역갈등이나 일본 수출 규제 등과 같은 글로벌 가치사슬의 변화에 대한 빠른 대응을 지원하며 정책적 의사결정을 위한 도구로써 충분한 유용성이 있다고 생각한다.

전이학습 기반 다중 컨볼류션 신경망 레이어의 활성화 특징과 주성분 분석을 이용한 이미지 분류 방법 (Transfer Learning using Multiple ConvNet Layers Activation Features with Principal Component Analysis for Image Classification)

  • 바트후 ?바자브;주마벡 알리하노브;팡양;고승현;조근식
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.205-225
    • /
    • 2018
  • Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.

데이터 마이닝과 텍스트 마이닝의 통합적 접근을 통한 병사 사고예측 모델 개발 (Development of the Accident Prediction Model for Enlisted Men through an Integrated Approach to Datamining and Textmining)

  • 윤승진;김수환;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.1-17
    • /
    • 2015
  • 최근, 군에서 가장 이슈가 되고 있는 문제는 기강 해이, 복무 부적응 등으로 인한 병력 사고이다. 이 같은 사고를 예방하는 데 있어 가장 중요한 것은, 사고의 요인이 될 수 있는 문제를 사전에 식별 관리하는 것이다. 이를 위해서 지휘관들은 병사들과의 면담, 생활관 순찰, 부모님과의 대화 등 나름대로의 노력을 기울이고 있기는 하지만, 지휘관 개개인의 역량에 따라 사고 징후를 식별하는 데 큰 차이가 나는 것이 현실이다. 본 연구에서는 이러한 문제점을 극복하고자 모든 지휘관들이 쉽게 획득 가능한 객관적 데이터를 활용하여 사고를 예측해 보려 한다. 최근에는 병사들의 생활지도기록부 DB화가 잘 되어있을 뿐 아니라 지휘관들이 병사들과 SNS상에서 소통하며 정보를 얻기 때문에 이를 데이터화 하여 잘 활용한다면 병사들의 사고예측 및 예방이 가능하다고 판단하였다. 본 연구는 이러한 병사의 내부데이터(생활지도기록부) 및 외부데이터(SNS)를 활용하여 그들의 관심분야를 파악하고 사고를 예측, 이를 지휘에 활용하는 데이터마이닝 문제를 다루며, 그 방법으로 토픽분석 및 의사결정나무 방법을 제안한다. 연구는 크게 두 흐름으로 진행하였다. 첫 번째는 병사들의 SNS에서 토픽을 분석하고 이를 독립변수화 하였고 두 번째는 병사들의 내부데이터에 이 토픽분석결과를 독립변수로 추가하여 의사결정나무를 수행하였다. 이 때 종속변수는 병사들의 사고유무이다. 분석결과 사고 예측 정확도가 약 92%로 뛰어난 예측력을 보였다. 본 연구를 기반으로 향후 장병들의 사고예측을 과학적으로 분석, 맞춤식으로 관리한다면 군대 내 각종 사고를 미연에 예방하는데 기여할 것으로 기대된다.

딥러닝에 의한 라이다 반사강도로부터 엄밀정사영상 생성 (True Orthoimage Generation from LiDAR Intensity Using Deep Learning)

  • 신영하;형성웅;이동천
    • 한국측량학회지
    • /
    • 제38권4호
    • /
    • pp.363-373
    • /
    • 2020
  • 정사영상 생성을 위한 많은 연구들이 진행되어 왔다. 기존의 방법은 정사영상을 제작할 경우, 폐색지역을 탐지하고 복원하기 위해 항공영상의 외부표정요소와 정밀 3D 객체 모델링 데이터가 필요하며, 일련의 복잡한 과정을 자동화하는 것은 어렵다. 본 논문에서는 기존의 방법에서 탈피하여 딥러닝(DL)을 이용하여 엄밀정사영상을 제작하는 새로운 방법을 제안하였다. 딥러닝은 여러 분야에서 더욱 급속하게 활용되고 있으며, 최근 생성적 적대 신경망(GAN)은 영상처리 및 컴퓨터비전 분야에서 많은 관심의 대상이다. GAN을 구성하는 생성망은 실제 영상과 유사한 결과가 생성되도록 학습을 수행하고, 판별망은 생성망의 결과가 실제 영상으로 판단될 때까지 반복적으로 수행한다. 본 논문에서 독일 사진측량, 원격탐사 및 공간정보학회(DGPF)가 구축하고 국제 사진측량 및 원격탐사학회(ISPRS)가 제공하는 데이터 셋 중에서 라이다 반사강도 데이터와 적외선 정사영상을 GAN기반의 Pix2Pix 모델 학습에 사용하여 엄밀정사영상을 생성하는 두 가지 방법을 제안하였다. 첫 번째 방법은 라이다 반사강도영상을 입력하고 고해상도의 정사영상을 목적영상으로 사용하여 학습하는 방식이고, 두 번째 방법에서도 입력영상은 첫 번째 방법과 같이 라이다 반사강도영상이지만 목적영상은 라이다 점군집 데이터에 칼라를 지정한 저해상도의 영상을 이용하여 재귀적으로 학습하여 점진적으로 화질을 개선하는 방법이다. 두 가지 방법으로 생성된 정사영상을 FID(Fréchet Inception Distance)를 이용하여 정량적 수치로 비교하면 큰 차이는 없었지만, 입력영상과 목적영상의 품질이 유사할수록, 학습 수행 시 epoch를 증가시키면 우수한 결과를 얻을 수 있었다. 본 논문은 딥러닝으로 엄밀정사영상 생성 가능성을 확인하기 위한 초기단계의 실험적 연구로서 향후 보완 및 개선할 사항을 파악할 수 있었다.

이상기상 시 사일리지용 옥수수의 기계학습을 이용한 피해량 산출 (Damage of Whole Crop Maize in Abnormal Climate Using Machine Learning)

  • 김지융;최재성;조현욱;김문주;김병완;성경일
    • 한국초지조사료학회지
    • /
    • 제42권2호
    • /
    • pp.127-136
    • /
    • 2022
  • 본 연구는 기계학습을 기반으로 제작한 수량예측모델을 통해 이상기상에 따른 사일리지용 옥수수(WCM)의 피해량 산정 및 전자지도를 작성할 목적으로 수행하였다. WCM 데이터는 수입적응성 시험보고서(n = 1,219), 국립축산과학원 시험연구보고서(n = 1,294), 한국축산학회지(n = 8), 한국초지조사료학회지(n = 707) 및 학위논문(n = 4)에서 총 3,232점을 수집하였으며 기상 데이터는 기상청의 기상자료개방포털에서 수집하였다. 본 연구에서 이상기상에 따른 WCM의 피해량은 WMO 방식을 준용하여 산정하였다. 정상기상에서 DMY 예측값은 13,845~19,347 kg/ha 범위로 나타났으며 피해량은 이상기온, 이상강수량 및 이상풍속에서 각각 -305~310, -54~89 및 -610~813 kg/ha 범위로 나타났다. 최대 피해량은 이상풍속에서 813 kg/ha로 나타났다. WMO 방식을 통해 산정한 WCM의 피해량은 QGIS를 이용하여 전자지도로 제시하였다. 이상기상에 따른 WCM의 피해량 산정시 데이터가 없어 공백인 지역이 존재하여 이를 보완하기 위해 종관기상대보다 많은 지점의 데이터를 제공하고 있는 방재기상대를 이용하면 보다 세밀한 피해량을 산정할 수 있을 것이다.

고객 선호 변화를 고려한 토픽 모델링 기반 추천 시스템 (A Topic Modeling-based Recommender System Considering Changes in User Preferences)

  • 강소영;김재경;최일영;강창동
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.43-56
    • /
    • 2020
  • 추천 시스템은 사용자가 다양한 옵션 중에서 최선의 선택을 할 수 있도록 도와준다. 그러나 추천 시스템이 상업적으로 성공하기 위해서는 극복할 몇 개의 문제점이 존재한다. 첫째, 추천시스템의 투명성 부족 문제이다. 즉, 추천된 상품이 왜 추천되었는지 사용자들이 알 수 없다. 둘째, 추천시스템이 사용자 선호의 변화를 즉각적으로 반영할 수 없는 문제이다. 즉, 사용자의 상품에 대한 선호는 시간이 지남에 따라 변함에도 불구하고, 추천시스템이 사용자 선호를 반영하기 위해서는 다시 모델을 재구축해야 한다. 따라서 본연구에서는 이러한 문제를 해결하기 위해 토픽 모델링과 순차 연관 규칙을 이용한 추천 방법론을 제안하였다. 토픽 모델링은 사용자에게 아이템이 왜 추천되었는지 설명하는데 유용하며, 순차 연관 규칙은 변화하는 사용자의 선호를 파악하는데 유용하다. 본 연구에서 제안한 방법은 크게 토픽 모델링 및 사용자 프로파일 생성 등 토픽 모델링에 기반한 사용자 프로파일 생성 단계와 토픽에 사용자 선호 확인 및 순차 연관 규칙 발견 등 순차 연관 규칙에 기반한 추천 단계로 구분된다. 벤치마크 시스템으로 협업 필터링 기반 추천 시스템을 개발하고, 아마존의 리뷰 데이터 셋을 이용하여 제안한 방법론의 성능을 비교 평가하였다. 비교 분석 결과, 제안한 방법론이 협업 필터링 기반 추천시스템보다 뛰어난 성능을 보였다. 따라서 본 연구에서 제안하는 추천 방법을 통해 추천 시스템의 투명성을 확보할 수 있을 뿐만 아니라, 시간에 따라 변화하는 사용자의 선호를 반영할 수 있다. 그러나 본 연구는 토픽과 관련된 상품을 추천하기 때문에, 토픽에 포함된 상품의 수가 많을 경우 추천이 정교하지 못하는 한계점이 있다. 또한 토픽의 수가 적기 때문에 토픽에 대한 순차 연관 규칙이 너무 적은 문제점이 있다. 향후 연구에서 이러한 문제점을 해결한다면 좋은 연구가 될 것으로 판단된다.

딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석 (Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm)

  • 허재원;이창희;서두천;오재홍;이창노;한유경
    • 대한원격탐사학회지
    • /
    • 제40권4호
    • /
    • pp.387-396
    • /
    • 2024
  • 대부분의 고해상도 위성영상은 rational polynomial coefficients (RPC) 정보를 제공하여 지상좌표와 영상좌표 간 변환을 수행한다. 그러나 초기 RPC에는 기하학적 오차가 존재하여 ground control points (GCPs)와의 정합을 통해 보정을 수행하여야 한다. GCP chip은 항공정사영상에서 추출한 높이 정보가 포함된 작은 영상 패치(patch)이다. 많은 선행연구에서는 영역 기반 정합 기법을 사용하여 고해상도 위성영상과 GCP chip 간 정합을 수행하였다. 계절적 차이나 변화된 지역이 존재하는 영상에서는 화소값에 의존하는 정합이 어렵기 때문에 윤곽 정보를 추출하여 정합을 수행하기도 한다. 그러나 일반적으로 사용하는 canny 기법으로 정합에 용이한 윤곽을 추출하기 위해서는 위성영상의 분광 특성에 적절한 임계치를 설정해주어야 하는 문제가 존재한다. 따라서 본 연구에서는 위성영상의 지역별 특성에 둔감한 윤곽 정보를 활용하여 RPC 보정을 위한 정합을 수행하고자 한다. 이를 위해 딥러닝 기반 윤곽 정보 추출 네트워크인 pixel difference network (PiDiNet)를 활용하여 위성영상과 GCP chip의 윤곽맵(edge map)을 각각 생성하였다. 그 후 생성된 윤곽맵을 normalized cross-correlation과 relative edge cross-correlation의 입력데이터로 대체하여 영역 기반의 정합을 수행하였다. 마지막으로 RPC 보정에 필요한 변환모델 계수를 도출하기 위하여 data snooping 기법을 반복적으로 적용하여 참정합쌍을 추출하였다. 오정합쌍을 제거한 참정합쌍에 대해 root mean square error (RMSE)를 도출하고 기존에 사용하던 상관관계 기법과 결과를 정성적으로 비교하였다. 실험 결과, PiDiNet은 약 0.3~0.9 화소의 RMSE 값 분포를 보였으나 canny 기법에 비해 두꺼운 윤곽을 나타내어 일부 영상에서 미세하게 정확도가 저하되는 것을 확인하였다. 그러나 위성영상 내 특징적인 윤곽을 일관적으로 나타냄으로써 정합이 어려운 지역에서도 정합이 잘 수행되는 것을 확인하였다. 본 연구를 통해 윤곽 기반 정합 기법의 강인성을 개선하여 다양한 지역에서의 정합을 수행할 수 있을 것으로 예상된다.