• Title/Summary/Keyword: 데이타 캐시 선인출

Search Result 3, Processing Time 0.017 seconds

A Hardware Cache Prefetching Scheme for Multimedia Data with Intermittently Irregular Strides (단속적(斷續的) 불규칙 주소간격을 갖는 멀티미디어 데이타를 위한 하드웨어 캐시 선인출 방법)

  • Chon Young-Suk;Moon Hyun-Ju;Jeon Joongnam;Kim Sukil
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.11
    • /
    • pp.658-672
    • /
    • 2004
  • Multimedia applications are required to process the huge amount of data at high speed in real time. The memory reference instructions such as loads and stores are the main factor which limits the high speed execution of processor. To enhance the memory reference speed, cache prefetch schemes are used so as to reduce the cache miss ratio and the total execution time by previously fetching data into cache that is expected to be referenced in the future. In this study, we present an advanced data cache prefetching scheme that improves the conventional RPT (reference prediction table) based scheme. We considers the cache line size in calculation of the address stride referenced by the same instruction, and enhances the prefetching algorithm so that the effect of prefetching could be maintained even if an irregular address stride is inserted into the series of uniform strides. According to experiment results on multimedia benchmark programs, the cache miss ratio has been improved 29% in average compared to the conventional RPT scheme while the bus usage has increased relatively small amount (0.03%).

Design of A Media Processor Equipped with Dual Cache (복수 캐시로 구성한 미디어 프로세서의 설계)

  • Moon, Hyun-Ju;Jeon, Joong-Nam;Kim, Suk-Il
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.10
    • /
    • pp.573-581
    • /
    • 2002
  • In this paper, we propose a mediaprocessor of dual-cache architecture which is composed of the multimedia data cache and the general-purpose data cache to prevent performance degradation caused by memory delay. In the proposed processor architecture, multimedia data that are written in subword instructions are loaded in the multimedia data cache and the remaining data are loaded in the general-purpose data cache. Also, Ive use multi-block prefetching scheme that fetches two consecutive data blocks into a cache at a time to exploit the locality of multimedia data. Experimental results on MPEG and JPEG benchmark programs show that the proposed processor architecture results in better performance than the processor equipped with single data cache.

Dynamic Prefetch Filtering Schemes to enhance Utilization of Data Cache (데이타 캐시의 활용도를 높이는 동적 선인출 필터링 기법)

  • Chon, Young-Suk;Kim, Suk-Il;Jeon, Joong-Nam
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.1
    • /
    • pp.30-43
    • /
    • 2008
  • Memory reference instructions such as loads or stores are critical factors that limit the processing power of processor. The prefetching technique is an effective way to reduce the latency caused from memory access. However, excessively aggressive prefetch leads to cache pollution so as to cancel out the advantage of prefetch. In this study, four filtering schemes have been compared and evaluated which dynamically decide whether to begin prefetch after referring a filtering table to decrease cache pollution. First, A bi-states scheme has been shown to analyze the lock problem of the conventional scheme, this scheme such as conventional scheme used to be N:1 mapping, but it has the two state to 1bit value of each entries. A complete state scheme has been introduced to be used as a reference for the comparative study. A block address lookup scheme has been proposed as the main idea of this paper which exhibits the most exact filtering performance. This scheme has a length of the table the same as the bi-states scheme, the contents of each entry have the fields the same as the complete state scheme recently, never referenced data block address has been 1:1 mapping a entry of the filter table. Experimental results from commonly used general benchmarks and multimedia programs show that average cache miss ratio have been decreased by 10.5% for the block address lookup scheme(BAL) compare to conventional dynamic filter scheme(2-bitSC).