• Title/Summary/Keyword: 덕티드 팬

Search Result 16, Processing Time 0.028 seconds

Dynamic Modeling and Stabilization of a Tri-Ducted Fan Unmanned Aerial Vehicles using Lyapunov Control (삼중 덕티드 팬 비행체 운동모델링 및 리아푸노프 제어를 이용한 안정화)

  • Na, Kyung-Seok;Won, Dae-Hee;Yoon, Seok-Hwan;Sung, Sang-Kyung;Ryu, Min-Hyoung;Cho, Jin-Soo;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.574-581
    • /
    • 2012
  • Because of the exposed blade, the UAV using the rotors entail the risks during operation. While a wrapped duct around the fan blades reduces risks, it is a higher thrust performance than the same power load rotor. In this paper, for applying advantages of a ducted fan, the tri-ducted fan air vehicle configuration is proposed. The vehicle has three ducted fans. Two of them are the same shape and size and the third one is the smaller. It is possible to control a rapid attitude stability using thrust vector control. The equations of motion of the tri-ducted fan were derived. Lyapunov control input was applied to the system and stable inputs were derived. A nonlinear simulation was fulfilled by using parameters of a prototype vehicle. It verified a stable attitude and analyzed results.

Experimental Study on the Aerodynamic Characteristics of the Ducted Fan for a Small UAV (소형 무인기 추진용 덕티드 팬의 공력특성에 관한 실험적 연구)

  • Kim, Jae-Kyeong;Choi, Hyun-Min;Cha, Bong-Jun;Lee, Sang-Hyo;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.251-256
    • /
    • 2008
  • The experimental analysis on a ducted fan for the propulsion system of a small UAV were performed. To investigate the aerodynamic characteristics of the ducted fan, flow fields at inlet and outlet were measured using a hot-wire anemometry. Thrusts were measured with the six-component balance with due regard to the cross wind. To reproduce the cross wind effect, the ducted fan was aligned to $90^{\circ}$ rotated direction against flow direction in the wind tunnel. In this paper, the variation of the flow fields and thrust according to the cross wind were analyzed.

  • PDF

Experimental Study on the Aerodynamic Characteristics of the Ducted fan for the Propulsion of a Small UAV (소형 무인항공기 추진용 덕티드팬의 공력특성에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.413-422
    • /
    • 2012
  • The ducted fan for a small UAV propulsion can reconnoiter and observe in a town and a small area, it has better thrust efficiency and a long endurance than propeller. Thrust characteristics of hover and for ward flight condition for the ducted fan UAV is important issue to improve a endurance. The unsteady 3-dimensional flow fields of the ducted fan UAV is essential to stable flight. In this paper, to verify the design results of the ducted fan and to investigate a stable aeronautical characteristic, the thrust performance and the unsteady 3-dimensional flow fields are measured. Thrust characteristics for the hovering and the forward flight conditions are measured by the 6-components balance system in the subsonic wind tunnel. The unsteady 3-dimensional flow fields are analyzed by using a stationary $45^{\circ}$ slanted hot-wire technique. The swirl velocity is almost removed behind the stator blades. Therefore, the thrust performance of the ducted fan is improved and the flight stability is maintained.

Study on Tip Clearance Effect of a Counter-Rotating Ducted Fan for VTOL UAV (수직이착륙 무인항공기용 엇회전식 덕티드팬의 팁간극 영향에 대한 연구)

  • Min, Junho;Ryu, Minhyoung;Lee, Seawook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.516-523
    • /
    • 2013
  • The tip clearance effect on counter-rotating ducted fan of VTOL UAV in hovering condition, was investigate using computational analysis. The $k-{\omega}$ SST turbulence model is employed in this study. The numerical results of baseline model are validated by wind tunnel test in hovering and forward conditions. It is observed that if tip clearance of one rotor in the counter-rotating ducted fan increase then the thrust coefficient of another rotor increases. In Addition to this, when the tip clearance of the rear rotor increases, the thrust of the ducted fan is improved due to increasing of average total pressure at exit plane.

Experimental Study on the Aerodynamic Interaction of the Rotor and Stator for the Ducted fan UAV (덕티드 팬 무인기의 동익과 정익 공력상호작용에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.387-391
    • /
    • 2009
  • The experimental study on the ducted fan for the propulsion system of a small UAV has been performed. In this paper, to investigate the three-dimensional unsteady flow field characteristics of the ducted fan, it was measured by using a $45^{\circ}$ inclined hot-wire from hub to tip at inlet, behind the rotor and outlet of the ducted fan. The hot-wire signal data was acquired at fixed yaw angle. The data was averaged by using the PLEAT (Phase Locked Ensemble Averaging Technique), and then three of non-linear equations were solved simultaneously by using the Newton-Rhapson numerical method. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential contour plot.

  • PDF

A Study on Hovering Performance of Ducted Fan System Through Ground Tests and CFD Simulations (지상 시험과 CFD 시뮬레이션을 통한 덕티드 팬 시스템의 제자리 비행 성능 연구)

  • Choi, Young Jae;Wie, Seong-Yong;Yoon, Byung Il;Kim, Do-Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.399-405
    • /
    • 2021
  • In the present study, ground tests and CFD simulations for a ducted fan system were performed to verify the hovering performance of the ducted fan system designed by KARI rotorcraft team. Six blades were composed for the ducted fan, and target rotating speed of the fan was decided to 4,000 RPM. Collective pitch angles were considered from 20 degrees to 36 degrees. The test data were obtained by increasing the rotating speed up to 4,000 RPM in 1,000 RPM increments. The CFD simulations were considered only 4,000 RPM of rotating speed. The hovering performance was represented by thrust, power, duct thrust ratio, and FM(Figure of Merit). Reliability of the performance results was ensured through the test and simulation results, and it was found that the target performance was achieved under conditions above 31 degrees of the pitch angle.

Experimental Study on Aerodynamic Performance and Wake Characteristics of the Small Ducted Fan for VTOL UAV (수직 이착륙 무인기용 소형 덕티드팬의 공력성능 및 후류특성에 관한 실험적 연구)

  • Shin, Soo-Hee;Lee, Seung-Hun;Kim, Yang-Won;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.1
    • /
    • pp.1-12
    • /
    • 2022
  • Wind tunnel test for a small scale electric ducted fan with a 104mm diameter was conducted to analyze the aerodynamic characteristics when it was used as a propulsion system of tilt-propeller UAV. Experimental conditions were derived from flight conditions of a sub-scaled OPPAV. Forces and moments of the ducted fan model were measured by a 6-axis balance and 3-dimensional wake vectors which could induce an aerodynamic influence in the vehicle were measured by 5-hole probes. Thrust and torque on hover and cruise conditions were measured and analyzed to drive out the operating conditions when it was applied in the sub-scaled OPPAV. On transition conditions, thrust keep its value with tilt angle variation below 40° and increase after that. But, sideforce increase constantly until 75°. The maximum axial velocity in the wake on hover and cruise conditions was around 60m/s and tangential velocity was around 12m/s. The position of the maximum axial velocity and vortex center move off the fan rotation center line as the tilt angle increases.

The Development Trend of a VTOL MAV with a Ducted Propellant (덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향)

  • Kim, JinWan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This purpose of this paper was to review the development trend of the VTOL MAVs with a ducted propellant that can fly like the VTOL at intermediate and high speeds, hovering, landing, and lifting off vertically over urban areas, warships, bridges, and mountainous terrains. The MAV differs in flight characteristics from helicopters and fixed wings in many respects. In addition to enhancing thrust, the duct protects personnel from accidental contact with the spinning rotor. The purpose of the U.S. Army FCS and DARPA's OAV program is spurring development of a the VTOL ducted MAV. Today's MAVs are equipped with video/infrared cameras to hover-and-stare at enemies hidden behind forests and hills for approximately one hour surveillance and reconnaissance. Class-I is a VTOL ducted MAV developed in size and weight that individual soldiers can store in their backpacks. Class-II is the development of an organic VTOL ducted fan MAV with twice the operating time and a wider range of flight than Class-I. MAVs will need to develop to perch-and-stare technology for lengthy operation on the current hover-and-stare. The near future OAV's concept is to expand its mission capability and efficiency with a joint operation that automatically lifts-off, lands, refuels, and recharges on the vehicle's landing pad while the manned-unmanned ground vehicle is in operation. A ducted MAV needs the development of highly accurate relative position technology using low cost and small GPS for automatic lift-off and landing on the landing pad. There is also a need to develop a common command and control architecture that enables the cooperative operation of organisms between a VTOL ducted MAV and a manned-unmanned ground vehicle.

Performance Analysis of the Propulsion System for the Combined Rotorcraft (복합형 로터항공기의 동력장치 성능해석 연구)

  • Jo, Hana;Choi, Seongman;Park, Kyungsu;Yang, Gyaebyung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.83-90
    • /
    • 2017
  • Performance analysis of the turboshaft engines for combined rotorcraft was executed. A tip jet and a ducted fan aircraft were selected for combined rotorcraft application. Gasturb 12 software was used for turboshaft engine performance analysis. In the results, maximum required power for the tip jet engine is about 1,600 hp class and maximum required power for the ducted fan engine is about 1,000 hp class at the required aircraft mission. This is due to the additional power of the auxiliary compressor to get a bleed air mass flow rate for the tip jet operation. At the same time, fuel consumption of the tip jet aircraft is 2.8 times larger than ducted fan case. Therefore ducted fan type aircraft is more efficient than tip jet aircraft in terms of fuel economy.