• Title/Summary/Keyword: 덕트쿨러

Search Result 2, Processing Time 0.019 seconds

A study on a uniformity of flow field in a duct cooler of FGD system (배연탈황설비 덕트쿨러에서의 유동균일화에 관한 연구)

  • 배진효;김광추;박만흥;박경석;이종원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.2
    • /
    • pp.120-130
    • /
    • 2000
  • A flow uniformity in a duct cooler of duct system of FGD(Flue Gas Desulfurization) linking a reheater and a absorber has been investigated in the present study. For this purpose, the flow characteristics according to the geometry of a vertical and horizontal vane in a curved duct of the duct system has been examined with the aid of a numerical simulation. The results indicate that the vertical vane with a little deflection toward a recirculation region makes the flow distribution in the duct cooler more uniform than that without deflection, and horizontal vane does not effect the change of the flow distribution for an angle of inclination. The mean flow uniform factor shows its maximum for duct system without the vane(case NP) and its minimum for the vertical vane with a little deflection(case P-0.8-0) .

  • PDF

Numerical Study on Surface Air-Oil Heat Exchanger for Aero Gas-Turbine Engine Using One-Dimensional Flow and Thermal Network Model (항공기 가스터빈용 오일쿨러 해석을 위한 1 차원 열유동 네트워크 수치적 모델 개발 및 연구)

  • Kim, Young Jin;Kim, Minsung;Ha, Man Yeong;Min, June Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.11
    • /
    • pp.915-924
    • /
    • 2014
  • In an aero gas-turbine engine, a surface air-oil heat exchanger (SAOHE) is used to cool the oil system for the gearboxes and electric generators. The SAOHE is installed inside the fan casing of the engine in order to dissipate the heat from the oil system into the bypass duct stream. The purpose of this study was to develop an effective numerical method for designing an SAOHE for an aero gas-turbine engine. A two-dimensional model using a porous medium was developed to evaluate the aero-thermal performance of the fins of the heat exchanger, and a one-dimensional flow and thermal network program was developed to save time and cost in the evaluation of the heat exchanger performance. Using this network program, the pressure drop and heat transfer performance of the heat exchanger were predicted, and the results were compared with two-dimensional computational fluid dynamics results and experiment data for validation.