• Title/Summary/Keyword: 대 변형

Search Result 869, Processing Time 0.027 seconds

Geological Structures of the Southern Jecheon, Korea: Uplift Process of Dangdusan Metamorphic Complex and Its Implication (옥천대 제천 남부의 지질구조: 당두산변성암복합체의 상승과정과 그 의미)

  • Kihm, You-Hong;Kim, Jeong-Hwan;Cheong, Sang-Won
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.302-314
    • /
    • 2000
  • Keumseong area in the southern part of the Jecheon city, the Ogcheon Belt, consists of Precambrian Dangdusan Metamorphic Complex, Dori Formation of the Choseon Supergroup, and Jurassic Jecheon Granite. The Dangdusan Metamorphic Complex consists of quartz schist, mica schist. quartzite and pegmatite. The Dori Formation is composed of mainly laminated limestone. The rocks in the study area have been undergone at least three phases of deformations since Paleozoic period. The Dangdusan Metamorphic Complex is outcrop at three areas in the study area, which are exposed along the faults and occurred as inlier within the Dori Formation. Previous authors interpreted the uplift of the Dangdusan Metamorphic Complex by the Dangdusan Fault, but we could not find any evidences related to the Dangdusan Fault. Thus, we interpret the uplift of the Dangdusan Metamorphic Complex due to the D$_2$ Weolgulri and Dangdusan thrusts and post-D$_2$ Jungbodeul, Kokyo and Jungjeonri faults. The uplift of the Busan Metamorphic Complex to the west of the study area was interpreted by ductile deformation. However, the Dangdusan Metamorphic Complex is formed by brittle thrusts and faults in this study. According to deformation sequence, the characters of deformations in the Choseon and Ogcheon suprergroups had been changed from ductile to brittle deformations through the time. Therefore, we interpret the Dangdusan Metamorphic Complex is exposed later than the Busan Metamorphic Complex.

  • PDF

Analysis of Rear Closer of Vertical Launching System by Using Fluid-Structure Interaction Method (유체-고체 연성 해석 기법을 통한 수직발사대 후방 덮개의 거동 해석)

  • Lee, Younghun;Gwak, Min-cheol;Cho, Haeseong;Joo, Hyun Shig;Shin, Sang Joon;Yoh, Jai-ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.664-671
    • /
    • 2017
  • This paper presents a numerical analysis of behaviors of rear closer of vertical launch system under rocket plume based on fluid structure interaction analysis. The rocket plume loading is modeled by fully Eulerian method and elasto-plastic behavior of rear cover is calculated by total Lagrangian method based on a 9-node planar element. The interface motion and boundary conditions are described by a hybrid particle level-set method within the ghost fluid framework. We compare the fluid flow pattern between different rear closer models which are elast-plastic and rigid deformation.

  • PDF

Effect of Reinforcement details on the Seismic Performance of Precast Strain-Hardening Cementitious Composite(SHCC) Infill Walls (보강상세에 따른 프리캐스트 변형경화형 시멘트 복합체 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Song, Seon-Hwa;Yun, Yeo-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.209-216
    • /
    • 2009
  • Flexible frames on their own offer little resistance to lateral forces, resulting often in large deflections and rotations at the joints. On the other hand, walls subjected to lateral loads fail mainly in shear at relatively small displacements. Therefore, when the nonductile frames and wall act together, the combined action of the composite system differs significantly from that of the frame or wall alone. The objective of the study is to evaluate seismic response of infill walls with notched midsection. Reinforcement detail of wall was main variable in the experiment. Also SHCC was used in order to prevent damage concentration into notched midsection of walls. Test results, SHCC infill walls show the multiple crack patterns as expected. However, PIW-ND specimen exhibits less story drift, stiffness and energy dissipation capacity than those of PIW-NC specimen.

The Micostructural Change During the Mylonitzation of Cheongsan Granite, Korea (청산화강암의 압쇄암화작용 동안에 미구조 변화)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.125-139
    • /
    • 2015
  • Rock structural and microstructural analyses on the deformed Cheongsan granite, which is characterized by abundant feldspar megacrystals, have been carried out to understand the microstructural change during the mylonitization by ductile shear deformation. In K-feldspars, the characteristic microstructures are recognized as microkinks, microfractures, myrmekites, flame perthites, and core-and-mantle structures without the development of subgrains in outer core-zone. Microkinks are observed in both the microfractured and unmicrofractured K-feldspars and the directions of their axes are generally extended across the adjacent K-feldspar fragments bounded by microfractures. Myrmekites and flame perthites are found on the strain-localized boundaries of the microfractured K-feldspars. In plagiclases, microfractures, deformation twins and kink bands are predominant. Grain size reduction of plagioclase megacrysts also occurs by microfracturing but the core-and-mantle structures like the case of K-feldspars are uncommon in the microfractured plagioclases. The deformation twins, which overlap the igneous zoning structures, are often found in less deformed rocks. The twin lamellae in more deformed rocks generally bisect the obtuse angles of conjugate kink-band boundaries, and are microfractured or microfaulted and randomly oriented. From such characteristic microstructures, thus, it can be suggested that the micostructures during the mylonitzation of Cheongsan granite was developed as follows: production of microkinks in the K-feldspar megacrysts and of deformation twins and kink bands in the plagioclase megacrysts, and then grain-size reduction of the feldspar megacrysts through microfracturing, and then production of core-and-mantle structures (grain-size reduction of the microfractured K-feldspars through grain boundary migration), myrmekites and flame perthites in the microfractured K-feldspars.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbng area, Korea -Crustal evolution and environmental geology of the central part of the North Sobaegsan Massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조 -북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • Gang, Ji Hun;Kim, Hyeong Sik;O, Se Bong
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.244-244
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroup(Jangsan Quarzite, Dueumri Formation and Janggum Limestone) and Pyeongan Group(Jaesan and Dongsugok Formations)] metasedimentary rocks and Mesozoic granitoid(Chunyang granite.) This study is to interpret geological structure of the North Sobaegsan Massif in the Jang-gunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis (L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(top-to-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(S4) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientation is recognized mainly in the Paleozoic metasedimentary rocks.

Geological Structure of Precambrian to Paleozoic metasedimentary rocks in the Janggunbong area, Korea-Crustal evolution and environmental geology of the central part of the North Sobaegsan massif, Korea- (장군봉지역 선캠브리아대-고생대 변성퇴적암류의 지질구조-북부 소백산육괴의 중앙부지역의 지각진화와 환경지질)

  • 강지훈;김형식;오세봉
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.224-259
    • /
    • 1997
  • The Janggunbong area(this study area) at the central-south part in the North Sobaegsan Massif, Korea, consists mainly of Precambrian(Wonnam and Yulri Formations)-Paleozoic [Joseon Supergroupuangsan Quarzite, Dueumri Formation and Janggun Limestone) and Pyeongan Group (Jaesan and Dongsugok Formations)l metasedimentary rocks and Mesozoic granitoid(Chunyang granite). This study is to interpret geological structure of the North Sobaegsan Massif in the Janggunbong area by analysing rock-structure and microstructure of the constituent rocks. It indicates that its geological structure was formed at least by four phases of deformation after the formation of gneissosity(S0) in the Wonnam Formation and bedding plane(S0) in the Paleozoic metasedimentary rocks. The first phase deformation(D1) formed tight isoclinal fold(F1). Its axial plane(S1) strikes east-west and steeply dips north. Its axis(L1) subhorizontally plunges east-west. The second phase deformation(D2), which was related to ductile shear deformation, formed stretching lineation(L2) and shear foliation(S2). The sense of the shear movement indicates dextral strike-slip shearing(topto-the east shearing). The third phase deformation(D3) formed open inclined fold(F3). Its axial plane(S3) strikes east-west and moderately or gently dips north. Its axis(L3) subhorizontally plunges east-west. The F3 fold reoriented the original north-dipping S1 foliation and D2 shear sense into south-dipping S1 foliation(top-to-the west shear sense on this foliation) at its a limb. The four phase of deformation(D4) formed asymmetric-type open inclined fold(F4) of NE-vergence with NW striking axial plane(%) and NW-NNW plunging axis(L4). The F4 fold partly reoriented pre-D4 structural elements with east-west trend into those with north-south trend. Such reorientaion is recognized mainly in the Paleozoic metasedimentary rocks.

  • PDF

Strain-Based Shear Strength Model for fiber Reinforced Concrete Beams (섬유보강 콘크리트 보를 위한 변형 기반 전단강도모델)

  • Choi Kyoung-Kyu;Park Hong-Gun;Wight James K.
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.911-922
    • /
    • 2005
  • A theoretical study was performed to investigate the behavioral chracteristics and shear strength of fiber reinforced concrete slender beams. In the fiber reinforced concrete beam, the shear force applied to a cross section of the beam was resisted by both compressive zone and tensile zone. The shear capacity of the compressive zone was defined addressing the interaction with the normal stresses developed by the flexural moment in the cross section. The shear capacity of the tensile zone was defined addressing the post-cracking tensile strength of fiber reinforced concrete. Since the magnitude and distribution of the normal stresses vary according to the flexural deformation of the beam, the shear capacity of the beam was defined as a function of the flexural deformation of the beam. The shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed method was developed as a unified shear design method which is applicable to conventional reinforced concrete as well as fiber reinforced concrete.

Metamorphism and Deformation of the Late Paleozoic Pyeongan Supergroup in the Taebaeksan Basin: Reviews on the Permo-Triassic Songrim Orogeny (태백산분지에 분포하는 후기 고생대 평안누층군의 변성-변형작용: 페름-삼첩기 송림 조산운동의 고찰)

  • Kim, Hyeong-Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.151-171
    • /
    • 2012
  • The Permo-Triassic Songrim orogeny in the Korean peninsula was a major tectonic event involving complicated continental collisions at the eastern margin of Eurasia. Based on the previous studies on the metamorphic and deformations features of the Songrim orogeny, this paper presents metamorphic and structural characteristics and timing of the Songrim orogeny in the Taebaeksan basin, and discuss about correlation of the tectono-metamorphic evolution of the Taebaeksan basin with the Okcheon basin and the Imjingang belt with a combined analysis of bulk crustal shortening direction, metamorphic P-T and T-t (time) paths. The metapelites in the Pyeongan Supergroup in the northeastern margin of the Taebaeksan basin have experienced lower-temperature/medium-pressure (LT/MP) regional metamorphism followed by high-temperature contact metamorphism due to the Jurassic granite intrusion. The earlier LT/MP regional metamorphism produced two loops of clockwise P-T-d (deformation) paths combined with four deformation events ($D_1-D_4$). The first loop concomitant with $D_1$ and $D_2$ occurred at $400-500^{\circ}C$, 1.5-3.0 kbar, and related with growth of syn-$D_1$ chloritoid and andalusite, post-$D_1$ margarite, Ca-rich syn-$D_2$ or post-$D_2$ plagioclase. The second loop accompanying $D_3$ and $D_4$ occurred at $520-580^{\circ}C$, 2.0-6.0 kbar, and associated with the growth of syn-$D_3$ garnet and staurolite, and syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts. Furthermore the syn-$D_1$ chloritoid and andalusite porphyroblasts grew during E-W bulk crustal shortening, whereas the syn-$D_3$ garnet and staurolite, and the syn-$D_4$ and/or post-$D_4$ andalusite porphyroblasts have grown under N-S bulk crustal shortening. The similarity in the characteristics and timing of the metamorphism and bulk crustal shortening directions between the Okcheon and Imjingang belts suggest that the peak metamorphic conditions tend to increase toward the western part (Imjingang belt and southwestern part of the Gyeonggi Massif) from the eastern part (Taebaeksan basin). The E-W bulk crustal shortening influenced the eastern part of the Okcheon belt, whereas the N-S bulk crustal shortening resulted in strong deformation in the Imjingang and Okcheon belts. Consequently, the Permo-Triassic Songrim orogeny in the Korean peninsula is probably not only related to collision of the North and South China blocks, but also to the amalgamation of terrane fragments at the eastern Eurasia margin (e.g., collision of the Sino-Korean continent and the Hida-Oki terrane).

Evaluation on the Deformation Capacity of Multipurpose Floor Level Joint System (다목적 바닥 레벨조인트의 변형 능력 평가)

  • Seo, Soo-Yeon;Choi, Yun-Cheul;Kang, In-Seok;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.197-204
    • /
    • 2005
  • Multipurpose Floor Level Joint(MFLJ) is a new construction technology system which was developed in domestic. By using this system, it is possible not only to absorb the deformation at expansion joint due to shrinkages of concrete but also to make ease the floor leveling during the concrete casting at floor. The system consists of two elements, supporting devices and rails. Their structural capacities were verified through several experimental programs, such as compressive strength test of support and bending test of rail. The purpose of this paper is to evaluate the deformation absorbing capacity of the floor level joint. An experimental work was carried out to simulate the deformation condition at the joint and the test result was analyzed and evaluated. In addition, FEM analysis for expansion joint of typical building was also performed to predict the real behavior of MFLJ. The test results showed that MFLJ has sufficient deformation capacity required to act as expansion joint.