Bong-Su Kim;Hye-Jin Jun;Hyun-Kyu Jeon;Hye-in Jung;Jung-Hoon Jang
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.198-204
/
2022
대화 요약은 다중 발화자와 발화문으로 이루어진 멀티턴 형식의 문서에 대해 핵심내용을 추출하거나 생성하는 태스크이다. 대화 요약 모델은 추천, 대화 시스템 등에 콘텐츠, 서비스 기록에 대한 분석을 제공하는 데 유용하다. 하지만 모델 구축에 필요한 한국어 대화 요약 데이터셋에 대한 연구는 부족한 실정이다. 본 논문에서는 생성 기반 대화 요약을 위한 데이터셋을 제안한다. 이를 위해 국내 방송사의 대용량 콘텐츠로 부터 원천 데이터를 수집하고, 주석자가 수작업으로 레이블링 하였다. 구축된 데이터셋 규모는 6개 카테고리에 대해 약 100K이며, 요약문은 단문장, 세문장, 2할문장으로 구분되어 레이블링 되었다. 또한 본 논문에서는 데이터의 특성을 내재화하고 통제할 수 있도록 대화 요약 레이블링 가이드를 제안한다. 이를 기준으로 모델 적합성 검증에 사용될 디코딩 모델 구조를 선정한다. 실험을 통해 구축된 데이터의 몇가지 특성을 조명하고, 후속 연구를 위한 벤치마크 성능을 제시한다. 데이터와 모델은 aihub.or.kr에 배포 되었다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.209-213
/
2023
최근 자연어 이해 분야에서 대규모 언어모델 기반으로 프롬프트를 활용하여 모델과 상호작용하는 방법이 널리 연구되고 있으며, 특히 상담 분야에서 언어모델을 활용한다면 내담자와의 자연스러운 대화를 주도할 수 있는 대화생성 모델로 확장이 가능하다. 내담자의 상황에 따라 개인화된 상담대화를 진행하는 모델을 학습시키려면 동일한 내담자에 대한 과거 및 차기 상담대화가 필요하지만, 기존의 데이터셋은 대체로 단일 대화세션으로 구축되어 있다. 본 논문에서는 언어모델을 활용하여 단일 대화세션으로 구축된 기존 상담대화 데이터셋을 확장하여 연속된 대화세션 구성의 학습데이터를 확보할 수 있는 프롬프트 기반 데이터 증강 기법을 제안한다. 제안 기법은 기존 대화내용을 반영한 요약질문 생성단계와 대화맥락을 유지한 차기 상담대화 생성 단계로 구성되며, 프롬프트 엔지니어링을 통해 상담 분야의 데이터셋을 확장하고 사용자 평가를 통해 제안 기법의 데이터 증강이 품질에 미치는 영향을 확인한다.
Journal of the Korea Society of Computer and Information
/
v.27
no.8
/
pp.41-47
/
2022
In this paper, we propose how to implement text summaries for colloquial data that are not clearly organized. For this study, SAMSum data, which is colloquial data, was used, and the BERTSumExtAbs model proposed in the previous study of the automatic summary model was applied. More than 70% of the SAMSum dataset consists of conversations between two people, and the remaining 30% consists of conversations between three or more people. As a result, by applying the automatic text summarization model to colloquial data, a result of 42.43 or higher was derived in the ROUGE Score R-1. In addition, a high score of 45.81 was derived by fine-tuning the BERTSum model, which was previously proposed as a text summarization model. Through this study, the performance of colloquial generation summary has been proven, and it is hoped that the computer will understand human natural language as it is and be used as basic data to solve various tasks.
Kim, Moonjong;Lee, Jaean;Han, Kyouyeol;Ahn, Youngmin
KIISE Transactions on Computing Practices
/
v.22
no.1
/
pp.50-55
/
2016
To attain an understanding of customers' opinions or demands regarding a companies' products or service, it is important to consider VOC (Voice of Customer) data; however, it is difficult to understand contexts from VOC because segmented and duplicate sentences and a variety of dialog contexts. In this article, POS (part of speech) and morphemes were selected as language resources due to their semantic importance regarding documents, and based on these, we defined an LSP (Lexico-Semantic-Pattern) to understand the structure and semantics of the sentences and extracted summary by key sentences; furthermore the LSP was introduced to connect the segmented sentences and remove any contextual repetition. We also defined the LSP by categories and classified the documents based on those categories that comprise the main sentences matched by LSP. In the experiment, we classified the VOC-data documents for the creation of a summarization before comparing the result with the previous methodologies.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.653-656
/
2019
소프트웨어의 유지보수 단계에서 소프트웨어의 버그 리포트는 개발자에게 유용한 정보를 제공한다. 개발자들은 버그 수정이나 변경 내역 열람 등 다양한 작업을 위해 버그 리포트를 열람한다. 하지만, 대화 형식으로 작성되는 버그 리포트의 특징 때문에 버그 리포트는 종종 매우 길거나 장황하여 이를 읽고 이해하기 어려운 경우가 많다. 이러한 문제점을 해결하기 위한 방법으로 버그 리포트의 요약문을 자동으로 생성하는 기법을 제안하였고, 다양한 관련 연구가 진행되었다. 그러나, 기존에 제안된 버그 리포트 요약 기법들은 버그 리포트만의 고유한 특성들을 활용하지 않는 경우가 많다. 본 연구에서는 버그 리포트들 사이의 중복(duplicates), 의존(depends-on), 역의존(blocks) 관계들을 이용한 PageRank 알고리즘 기반 버그 리포트 요약 기법을 제안한다. 실험 결과 제안 기법이 기존 버그 리포트 요약 기법보다 요약 품질과 적용 범위 측면에서 뛰어남을 확인하였다.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.731-736
/
2023
Recently, the medical field has been applying mandatory Electronic Medical Records (EMRs) and Electronic Health Records (EHRs) systems that computerize and manage medical records, and distributing them throughout the entire medical industry to utilize patients' past medical records for additional medical procedures. However, the conversations between medical professionals and patients that occur during general medical consultations and counseling sessions are not separately recorded or stored, so additional important patient information cannot be efficiently utilized. Therefore, we propose an electronic medical record system that uses speech recognition and natural language processing deep learning to store conversations between medical professionals and patients in text form, automatically extracts and summarizes important medical consultation information, and generates electronic medical records. The system acquires text information through the recognition process of medical professionals and patients' medical consultation content. The acquired text is then divided into multiple sentences, and the importance of multiple keywords included in the generated sentences is calculated. Based on the calculated importance, the system ranks multiple sentences and summarizes them to create the final electronic medical record data. The proposed system's performance is verified to be excellent through quantitative analysis.
Journal of the Korea Institute of Information and Communication Engineering
/
v.4
no.5
/
pp.919-930
/
2000
This paper treats a development of visual interactive modeling(VIM) system for ship scheduling problem in integer formulation. The ship scheduling problem can be described as "A problem which assigns ships and cargos to achieve maximum revenue from transportation" in brief. Since late 1970s there has been rapid growth in development and use of VIM as MS10R technology due to the development of computer technology and now VIM has become a important discipline in MS/OR and MIS society. Visual Interactive Modeling is a process that decision maker takes part in modeling life cycle -data collection, formulation, derivation of optimal solution and representation of solution - and interacts with a modeling system to achieve a user-solution appropriate for his/her ultimate goal. This paper suggests the methodology how to collect data, build and modify model, and represent solution using computer graphics as a major driving tool and demonstrates effective performance of a prototype system.pe system.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.129-132
/
2019
최근 자연어 처리 기술에 대한 중요도가 높아지고, 발전 속도가 빨라지면서, 산업 전반에 걸쳐 챗봇에 대한 수요가 증가하고 있다. 본 논문은 챗봇을 이용한 소셜 매거진 생성 및 배포, 그리고 이를 활용하여 사용자에게 텍스트를 음성으로 변환하여 동영상의 형태로 전달해 주는 시스템을 다루고 있다. 챗봇이 사용자 대화를 수집, 분석하여 상황에 맞는 키워드를 추출하고, 중복 콘텐츠 제거, 텍스트 요약 등 일련의 과정을 거쳐 소셜 매거진을 생성 및 배포하는 서비스와, 매거진의 각 콘텐츠를 구성하는 이미지, 텍스트 정보를 가지고 음성 합성, 자막 생성, 영상 효과 등을 이용하여 영상을 합성하는 서비스에 관한 것이다. 본 논문에서 제안한 시스템에 대한 성능은 실험을 통하여 검증하였다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.382-387
/
2023
현재 GPT-4와 같은 거대한 언어 모델이 기계 번역, 요약 및 대화와 같은 다양한 작업에서 압도적인 성능을 보이고 있다. 그러나 이러한 거대 언어 모델은 학습 및 적용에 상당한 계산 리소스와 도메인 특화 미세 조정이 어려운 등 몇 가지 문제를 가지고 있다. In-Context learning은 데이터셋에서 추출한 컨택스트의 정보만으로 효과적으로 작동할 수 있는 효율성을 제공하여 앞선 문제를 일부 해결했지만, 컨텍스트의 샷 개수와 순서에 민감한 문제가 존재한다. 이러한 도전 과제를 해결하기 위해, 우리는 Super In-Context Learning (SuperICL)을 활용한 새로운 방법론을 제안한다. 기존의 SuperICL은 적용한 플러그인 모델의 출력 정보를 이용하여 문맥을 새로 구성하고 이를 활용하여 거대 언어 모델이 더욱 잘 분류할 수 있도록 한다. Super In-Context Learning for Generation은 다양한 자연어 생성 작업에 효과적으로 최적화하는 방법을 제공한다. 실험을 통해 플러그인 모델을 교체하여 다양한 작업에 적응하는 가능성을 확인하고, 자연어 생성 작업에서 우수한 성능을 보여준다. BLEU 및 ROUGE 메트릭을 포함한 평가 결과에서도 성능 향상을 보여주며, 선호도 평가를 통해 모델의 효과성을 확인했다.
Journal of The Korean Association For Science Education
/
v.43
no.3
/
pp.307-319
/
2023
This study aims to explain the key concepts and principles of text-based generative artificial intelligence (AI) that has been receiving increasing interest and utilization, focusing on its application in science education. It also highlights the potential and limitations of utilizing generative AI in science education, providing insights for its implementation and research aspects. Recent advancements in generative AI, predominantly based on transformer models consisting of encoders and decoders, have shown remarkable progress through optimization of reinforcement learning and reward models using human feedback, as well as understanding context. Particularly, it can perform various functions such as writing, summarizing, keyword extraction, evaluation, and feedback based on the ability to understand various user questions and intents. It also offers practical utility in diagnosing learners and structuring educational content based on provided examples by educators. However, it is necessary to examine the concerns regarding the limitations of generative AI, including the potential for conveying inaccurate facts or knowledge, bias resulting from overconfidence, and uncertainties regarding its impact on user attitudes or emotions. Moreover, the responses provided by generative AI are probabilistic based on response data from many individuals, which raises concerns about limiting insightful and innovative thinking that may offer different perspectives or ideas. In light of these considerations, this study provides practical suggestions for the positive utilization of AI in science education.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.