• Title/Summary/Keyword: 대형 시험

Search Result 893, Processing Time 0.021 seconds

Studies on the Occurrence of Upland Weeds and the Competition with Soybeans (전지(田地)와 콩밭에 있어서 잡초(雜草)의 발생(發生) 및 경합(競合)에 관한 조사(調査) 연구(硏究))

  • Lee, Key-Hong;Lee, Eun-Woong
    • Korean Journal of Weed Science
    • /
    • v.2 no.2
    • /
    • pp.75-113
    • /
    • 1982
  • Studies were carried out 1) to define the shape and size of sampling quadrat and its number of observations for weed experiments, 2) to characterize the growth and community of major summer weeds under upland condition and 3) to investigate the factors influencing competition between weeds and soybeans under weed-free and weedy conditions in early and late season cultures. No significant difference was noted among different shapes of quadrat (regular, rectangular, band, and circular) in the sampling efficiency of weeds. The results also suggested that the minimum size of quadrat was 0.25$m^2$ and the minimum number of replication was 2 times per plot. The major dominant weeds were about 10 species in the experimental field and the total number of weeds was in the range of 70 - 1,600 plants per $m^2$. Among the weeds Digitaria sanguinalis and Portulaca oleracea were the most dominant species. Growth amount and reproduction capability were also measured by weed species. Five different weed communities were identified in the field. The degree of dispersion by weed species and association among weeds were investigated. Intra-(within soybeans) and inter-specific (between soybeans and weeds) competition were studied in early and late season cultures of soybeans. The average yield of soybeans per plant was significantly decreased in both season cultures due to intra-specific competition as the planting density of soybeans increased, On the other hand, the average yield of soybeans per l0a was proportionally increased to the increase of planting density and the rate of its increase was more significant under weedy than weed-free condition. Most of the agronomic characteristics of soybeans were affected by weeds and its degree was greater in sparse planting than in dense planting and in early season than in late-season culture. Digitaria sanguinalis was the most competitive to soybeans in early season and both of Digitaria sanguinalis and Portulaca oleracea affected primarily the growth of soybeans in late season with about the same competitiveness. The occurrence of weeds was significantly decreased in early season and slightly decreased in late-season by dense planting of soybeans. The total growth amount of weeds was also considerably decreased by increase of soybean planting density both in early- and late-season cultures. The occurrence of Digitaria sanguinalis which was the most dominant in both seasons, and its growth amount was significantly decreased as the planting density of soybean was increased. On the other hand, the occurrence of Portulaca oleracea which was only dominant in late-season culture did not show significant response to the planting density of soybeans.

  • PDF

Effects of the Development of Cracks into Deeper Zone on Productivity and Dryness of the Clayey Paddy Field (점토질 논 토양의 심층화가 토지생산성 및 유면건조에 미치는 영향)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.15 no.3
    • /
    • pp.3059-3088
    • /
    • 1973
  • The Object of research was laid on the dry paddy field which had a low level of underground water, rather than on a paddy field with a high level of underground water. In the treatment of the clay paddy field before transplanting we employed 3 kinds of methods; deep plowing, development of cracks by drying the surface of the field under which pipe drain was built. This study was to find which one, among these three methods, is the most effective to let roots extend to deep zone and increase the yield of rice and at the same time, for trafficability of large scale machinery which will be introduced to the harvest, in the light of the earth bearing capacity in relation with underground drainage. In the treatments of plots, 1) the kyong plot was plowed 39 days before transplanting and dried, 2) the kyun plot was plowed again 2days before transplanting after plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying, 3) the kyunam plot was plowed again 2 days before transplanting after setting the drainage pipe and at the same time plowing 39 days before transplanting, leveling field surface in the saturation with water and developing the cracks by drying. Also each plot above had three different levels of soil depth, respectively; that is 15cm, 25cm, 35cm. The kyong plot with 15cm-depth was he control. The results obtained were as follows; 1. The kyunam plot showed a remarkably lager amount of water consumption by better underground drainage than the kyong and the kyun plot, and the kyong plot indicated a greater amount of water consumption than the kyun plot. Therefore the amount of available rainfall was decreased in the order of kyunam>kyong>kyun. The net duty of water decreased in the order of kyunam>kyong>kyun and its showed about 105cm in depth at the kyunam plot, about 70cm in depth at the kyong plot and about 45cm in depth at kyun plot, regardless of soil depth. 2. According to the tendency that the weight of the total root was effected by the maximum depth of the crack, it seemed that the root development was more affected by the depth of the crack than by only the crack itself. The weight of the total roots tended to increase as the depth of the crack got deeper and deeper, and the weight of the total roots was increased in the order of kyun<kyunam<kyong. 3. In the growing of the plant height, the difference did not appear at the beginning of growing(peak period of tillering) of any plot, But for the mid period of growing(ending period of tillering) to the period of young panicle formation, the deeper the depth of plot is, the more the growing goes down. On the contrary at the late period of growing, growth was more vigorous in the plot with deep depth than in the plot with shallow depth. Since the midperiod of growing, in the light of experimental treatment, the kyun plot was not better in growing than the other two plots and no remarkable defference was shown between the kyunam and the kyong plot, but the kyunam plot had the tendency of superiority in growing plant height. 4. As the depth of plot went deeper, the decreasing tendency was shown in the number of tillers through a whole period of growingi. When the above results were observed concering each plot of experimental treatment, the kyun plot was always smaller in the number of tiilers than the kyunam and the kvong plot, and the kyong plot was slightly larger than the kyunam plot in the number of tillers. 5. When each plot of the different experimental treatments was compared with the control plot(15-kyong), yield(weight of grains) was increased by 17% for the 35-kyong plot, by 10% for the 35-kyunam and yields for the other plots were less or nomore than the control plot. On the whole, as the depth of plot went deeper, yields for plots was increased in the order of kyong>kyunam>kyun. 1% of significance between the levels of depths and 5% of significance between the treatments were shown. 6. The depth of consumptive water which was more effective on the weight of grains is that of the last half period. When the depth of consumptive water was increased at the range of less than 2.7cm/day in the 15cm plot, 3.0cm/day in the 25cm plot and 3.3cm/day in the 35cm plot, the weight of grains was increased, and at the same time the weight of grains was increased as the depth of plot went deeper. The deeper plots was of advantage to the productivity at the same depth of consumptive water. 7. The increase in the weight of grains in propertion to the weighte of root showed a tendency to increase depending on the depth of plot at each plot of the same weight of roots. The weight of roots and grains together increasezd in the order of kyun>kyunam>kyong, considering each treatment of experimental plot. The weight of grains was in relation to the minimum water content ratio during the midperiod of surface drainage and the average earth temperature was mainly affected by the minimum water content ratio because it was relatively increased in proportion to the water content ratio(at less than 40%) 8. The weight ratio of straw to grain showed an increasing tendency at the plot of shallow depth and had a relation of an inversely exponental function to the weight of roots. At the same depth of plot except the 15cm plot, the weight ratio of straw to grain was increased in proportion to the depth of consumptive water. The weight of grains was increased as the depth of consumptive water was increased to some extent, but at the same time the weight of ratio of straw to grain was increased. 9. At a certain texture of soils the increase in the amount of the cracks depends on meteorological conditions, especially increase in amounts of pan evaporation. So if it rains during the progressing of field drying the cracks largely decrease. The amount of cracks of clay soil had relation of inversely exponental function to the water content ratio(at more than 25%). The maximum depth of crack kept generally a constant value at less than 30% of water content ratio. 10. The cone index showed the tendency that it was propertional to the amount of cracks within a certain limit but more or less inversely proportional over a certain limit. The water content ratio at the limit may be about 25%. 11. The increase in the cone index with the progressing of time after final surface drainage showed the tendency that it was proportional to the depth of consumptive water at the last half of growing period. Based on the same depth of if the cone index in the kyunam plot was much larger than in the other two plots and that in the kyong plot was much smaller than in the kyun plott, as long as the depth of plot was deeper, especially in the 35-kyong plot. 12. In the light of a situation where water content ratio of soil decreased and the cone index increased after final surface drainage the porogress of the field dryness was much more rapid in the kyunam plot than in the kyong plot and the kyun plot, especially slowest in the kyong plot. In the plot with deeper zone the progress was much slower. The progress requiring the value of the cone index, $2.5kg/cm^2$, that working machinary can move easily on the field changed with the time of final surface drainage and the amount of rainfall, but without nay rain it required, in the kyunam plot, about 44mm in total amount of pan evaporation and more than 50mm in the other two plots. Therefore the drying in the kyunam plot was generally more rapid in the kyunam plot was generally more rapid over 2days than in the kyun plot, and especially may be more rapid over 5days than in the 35-kyong plot.

  • PDF

Development of Tuna Purse Seine Fishery in Korea and the Countries Concerned (한국(韓國) 및 관련각국((關聯各國)의 다랑어 선망어업(旋網漁業) 발달과정(發達過程))

  • Hyun, Jong-Su;Lee, Byoung-Gee;Kim, Hyoung-Seok;Yae, Young-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.4 no.1
    • /
    • pp.30-46
    • /
    • 1992
  • Korea's first exploratory tuna fishing was done with a used longliner in 1957. Then the commercial fishing has been made steady headway since the 1960's and grown up to one of major tuna fishing countries in 1970's. The tuna fishing aimed primarily at acquiring foreign currency, then tuna was exported directly from the overseas fishing base. Tuna, however, has been gradually favored by Koreans as high-proteined foods according to the growth of GNP since the 1970's. In 1980, the canned tuna began to be produced and sold at home. And so the demand of raw tuna for cannaries has steeply increased not only for home but also for abroad, and stimulated the development of tuna purse seine fishery. The author carried out a study on the development of tuna purse seine fishery in Korea and countries concerned-the United States and Japan-because it is recognized to be significant for the further development of this fishery. Just as purse seining was originated in the United States, so tuna purse seining was also pioneered by Californian fishermen in the west coastal waters of the United States (Eastern Pacific Ocean). They started to produce the canned tuna in the early 1900's, and the demand for raw tuna began to be increased rapidly. In those days, tuna was mostly caught by pole-and-line, but the catch amount was far away from the demand. To satisfy this demand, they began to try out fishing tuna by the use of purse seine which had been born in the eastern waters in the 1820's and applied to catch white fishes in the western waters of the United States in those days. Even though their trial was technically successful through severe trial and error, a new problem was raised on the management of tuna resource and the preservation of porpoise which was occassionally caught with tuna. Then the Inter-American Tropical Tuna Commission (IATTC) was established by countries neighboring to the United States in 1950 and they set up the Commission's Yellowfin Regulatory Area (CYRA) and regulated the annual quota for yellowfin. Then, American owners tried to send their seiners to the Western African waters to expand the fishing ground in 1967 and to the Centeral-Western Pacfic in 1974, and the fishing ground was widely expanded. The number of the United States' purse seiners amounted to about 150 in 1980, but the enthusiasm was gradually cooled thereafter and the number of seiner was decreased to 67 in 1986. The landing of tuna by purse seiners in the United States after 1980 maintains 200 thousands M/T or so with a little increase despite the decreasing of domestic seiners. This shows that the landing by foreign seiners are increasing, compared with the landing by domestic seiners are decreasing. In Japan, even though purse seining was introduced in 1880, they had fished tuna by longline and pole-and -line until the tuna purse seining was introduced from the United States again. In the 1960's, Japanese tuna seiners made the exploratory fishing in the South-western Pacific and West African waters with a limited success. In 1971, the government-funded research center "JARMRAC" conducted the exploratory fishing which extended to the Central American waters, the Asia-Pacific Region and the South-western Pacific. It had also much difficulties, till they improved the fishing gear adaptable to the new fishing condition in the South-western Pacific. Japanese government has begun to licence 32 single seiners and 7 group seiners since 1980 and their standard has lasted up to now. The catch in the Pacific Islands Region amounted to 160 thousands M/T in 1986. Korea's tuna purse seine fishery was originated in 1971 by Jedong Industrial Co., Ltd. with three used tuna purse seiners purchased from the United States, and they began to fish in the Eastern Pacific, but failed owing to the superannuation of vessel and the infancy of fishing technique. The second challenge was done by Dongwon Industrial Co., Ltd. in 1979, with one used seiner purchased from the United States, and started to fish in the Eastern Pacific. Even though the first trial was almost unsuccessful but they could obtain the noticeable success by removing the vessel to the South-western Pacific in 1980. This success stimulated the Korean entherprisers to take part in this fishery, and the number of Korean tuna purse seiners has been increased rapidly in accordance with the increased demand for raw tuna. The number of vessels actually at work amounted to 36 in 1990 and they operate in the South-western Pacific. The annual catch of tuna by purse seiners amounted to 170 thousands M/T in 1990 and ranked to one of the major tuna purse seining countries in the world.

  • PDF