• Title/Summary/Keyword: 대형 구조물

Search Result 800, Processing Time 0.035 seconds

An Analysis of Design Parameters and Optimal Design for Anchors with Wide CFRP Plate (대형 CFRP Plate용 정착구의 설계요소분석 및 최적설계)

  • Kim, Hyung-Joon;Chung, Heung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.102-112
    • /
    • 2020
  • In this study, in order to design a wedge-type anchor that can hold an wide carbon plate with a width of 100 mm or more that can be used in a bridge structure, the mechanical behaviors are evaluated based on the main design variables such as the angle of the wedge and the coefficient of friction between the guide and the wedge. The stress state of the carbon plate was calculated by numerical analysis method for each design variable, and the performance of the anchor in the critical state was evaluated according to the failure criteria for composite material, and the optimal design specifications of the anchor were determined based on numerical results. The performance of the optimally designed anchor was verified through actual experiments, and the results of this study are considered to be useful for the optimal design of the CFRP plate anchor to reinforce large structures.

Modeling Scheme for Weld-Jointed Parts for Precise Structural Analysis of Large-Scale Structures (대형구조물의 구조해석 정밀도 향상을 위한 용접부 모델링 기법)

  • Jin, Dawei;Park, Sang-Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1195-1203
    • /
    • 2012
  • Welding is a well-developed, widely used process for permanently joining metal components. However, the mechanical reliability of welded parts still offers room for improvement. A weld region consists of a fusion zone, a partially melted zone, and a heat-affected zone, and each zone has different material properties. In addition, the geometrical shape of a weld bead or fillet influences the mechanical reliability. A precise structural analysis must consider how a local welded region influences the mechanical behavior of the entire structure. This study focuses on an effective modeling scheme for the weld region. It relies on experimental and numerical methods to determine the proper correlation based on experimental results and to propose a modeling scheme for welded parts.

Analysis of Electromagnetic Effect Inside Large Buildings by External Electromagnetic Waves Using Performance-Enhanced PWB Method (성능이 보완된 PWB 방법을 사용한 외부 전자기파에 의한 대형 건물 내부의 전자기파 영향 해석)

  • Lee, Han-Hee;Lee, Jae-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.12-22
    • /
    • 2019
  • This paper presents a method to perform a more efficient electromagnetic wave analysis inside a large building by external electromagnetic waves. Topological analysis and the PWB method are introduced for electromagnetic wave analysis. In addition, a Performance-Enhanced PWB method, which complements the performance of the PWB method is proposed. A large virtual structure was selected and an analysis environment was set up to perform the electromagnetic wave analysis inside a large building from external electromagnetic waves. A commercially available software, Wireless Insite, was used to verify the accuracy of the the Performance- Enhanced PWB method. As a result of comparing the two results in terms of accuracy, time, and memory, We conclude that the Performance-Enhanced PWB method proposed in this paper is a more efficient method in a large bulding.

破壞力學의 基礎와 破壞制御에의 應용 II

  • 유헌일;택목양삼
    • Journal of the KSME
    • /
    • v.22 no.2
    • /
    • pp.124-132
    • /
    • 1982
  • 구조물의 사고해석과 안전설계에 대한 파괴력학의 응용에 관해 개설했다. 금후 파괴역학적 개 념을 고려한 새로운 설계곡선의 개발과 대형구조물 파괴제어관리법의 개발이 안전설계에 대한 중요과제의 하나라고 생각한다.

  • PDF

A Study on Delay Time Building of Underpass for Small Car (소형차 전용 지하차도 도입에 따른 지체도 분석에 관한 연구)

  • Lee, Young-Woo
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.131-137
    • /
    • 2011
  • The development of underground space essentially leads to increase in construction cost and installation of a large structure also acts as a factor deteriorating fine sight of the city. Accordingly, there recently is a trend to make city center structures light and small if possible. In this study, for efficient development of underground space, we analyzed the change in the average delay time in comparison to the existing underpass and the influence thereof using a microscopic simulation software VISSIM 5.20 after controlling heavy vehicles not to use the underpass and to detour using the intersection above the underpass, and gradually increasing the ratio of heavy vehicles in accordance with v/c of the access road in order to examine efficiency of introducing an underpass exclusive to small cars at an underground road installed and being operated in a city road area, and presented installation standard for underpass exclusive to small vehicles adequate to the traffic characteristics. Considering the findings of the study, introduction of underpass exclusive to small cars judged to be beneficial in the aspects of reduction in the economic loss resulting from land purchase, environmental damage due to construction of large traffic structures and environment-friendly green traffic.

Analysis of Vibration Characteristics of a Full Vehicle Model Using Substructure Synthesis Method (부분구조합성법을 이용한 전차량 모델의 진동 특성 분석)

  • Kim, Bum-Suk;Kim, Bong-Soo;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.519-525
    • /
    • 2010
  • The finite element (FE) method is generally used to model and simulate the physical behavior of large structures, such as passenger vehicles or aircraft. However, FE analysis involves a very large computation time and cost for developing the analysis model. Therefore, the vibration characteristics of large structural systems are often analyzed using the component mode synthesis (CMS) method, which is one of the substructure synthesis methods. In this study, the vibration characteristics of passenger vehicles are analyzed by using the substructure synthesis method. A passenger vehicle model, which includes a vehicle body, suspension systems, and a sub-frame, is presented. The physical components of the vehicle system are modeled as equivalent substructures using the Craig-Bampton method of CMS. The vibration characteristics, such as the natural frequencies and mode shapes and frequency response, of the vehicle system are determined. The effects of variations in some design parameters on the vibration characteristics of the full vehicle model are also investigated.

Quantitative Analysis on Effective Stiffness of Horizontal Joints in Precast Concrete Large Panel Structures (P.C. 대형판 구조물의 수평접합부 유효강성에 대한 정량적 분석)

  • 이한선;장극관;신영식
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 1994
  • Though stiffnesses of joints in precast concrete(P.C.) large panel structures are known to be generally less than those in monolithic reinforced concrete wall structures, designers have very little information on the quantitative values with regards to these stiffnesses. The aim of this paper is to provide this quantitative information, in particular, on the compressive stiffness of horizontal joints, based on the analytical results derived from several experiments. Also, it is shown that the approach from the contact problem to determine this stiffness gives a value very simlar to those obtained above.

Input and System Identification of the Hualien Soil-Structure Interaction System Using Earthquake Response Data (지진응답자료를 사용한 화련 지반-구조물 상호작용계의 지진입력운동과 지반계수의 추정)

  • 최준성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.128-135
    • /
    • 2001
  • 본 논문에서는 지반-구조물 상호작용계의 입력하중과 강성에 관련된 물성값들을 구조물에서 계측된 지진응답만을 사용하여 효과적으로 추정할 수 있는 새로운 방법을 제안하였는데, 제안된 방법은 비지계수 추정을 위한 목적함수가 입력하중에 독립적이기 때문에 구조물에서 계측된 지진응답만으로 미지계수의 추정이 가능하도록 되어있다. 본 연구에서 제안된 방법의 검증은 국제공동 연구의 일환으로 최근 대만의 화련에 건설된 대형지진시험 구조물에서 계측된 지진 응답을 사용하여 수행하였다. 추정된 입력하중과 지반과 구조물의 강성에 관련된 물성값들을 사용하여 계산된 지진응답의 계측치와 매우 잘 일치하여, 추정결과의 타당성을 검증할 수 있었다.

  • PDF

신형 중간피복용 블럭의 개발(1)

  • 권혁민;이달수
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1998.09a
    • /
    • pp.138-142
    • /
    • 1998
  • 연안 구조물의 대표적인 형식인 경사식 방파제 또는 호안의 축조시에 이형블럭을 전면에 피복하여 사석부의 제체를 보호하는 형태가 널리 채택되고 있다. 이러한 연안 구조물의 축조 형식은 오랜 경험 및 피복용 이형블럭의 고안과 더불어 변형, 발전된 공법이다. 최근 물동량의 증가 및 선박의 대형화 등으로 인해 기존 항만의 확장시에 대수심 쪽으로 전진, 배치되는 추세에 있으므로 대파랑에 대응하기 위한 피복재의 중량 증가가 예상된다. (중략)

  • PDF

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.