• Title/Summary/Keyword: 대표 벡터

Search Result 300, Processing Time 0.035 seconds

A Study on Integrating Similarities (유사도 통합에 관한 연구)

  • Kim, Sunkyung;Park, Ji Su;Shon, Jin Gon
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.53-56
    • /
    • 2020
  • 유사도는 두 객체의 비슷한 정도를 실수로 나타낸 것이며 반대 개념인 다른 정도를 나타내는 것을 거리라 한다. 실세계에서 정확히 같은 것은 존재하기 힘들기 때문에 많은 응용 분야에서 유사도나 거리를 이용한다. 거리 중 대표적인 것으로 유클리드 공간에서 두 점 사이의 직선거리이다. 이 거리를 유클리드 거리라고 한다. 코사인 유사도는 벡터 공간에서 두 벡터 사이각의 코사인 값이다. 이외에도 용도에 따라 다양한 거리 또는 유사도가 연구되고 있다. 수학적으로 유사도는 이변수 함수로 나타낸다. 앞선 연구에서 민코프스키는 맨하탄 거리, 유클리드 거리 등을 매개변수 p를 이용하여 하나의 식으로 통합하였다. 이러한 유사도 통합은 유사도에 대한 새로운 통찰력을 제공하고 또 다른 응용을 제공한다. 본 논문은 기존 유사도의 의미를 개관하고 추가적인 매개변수를 도입하여 민코프스키 거리와 코사인 유사도를 통합한 식을 제시한다.

Deep learning based environmental sound classification for selective noise canceling (선택적 노이즈 캔슬링을 위한 딥 러닝 기반의 환경 인지 기술)

  • Choi, Hyunkook;Kim, Sangmin;Han, Seokhyeon;Shin, Seong-Hyeon;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.343-345
    • /
    • 2020
  • 본 논문에서는 선택적 노이즈 캔슬링을 위한 환경 인지 기술을 제안한다. 기존의 노이즈 캔슬링은 모든 소리를 구분 없이 차단하여 여러 가지 문제를 유발할 수 있으며 공통된 노이즈 캔슬링 동작으로 각 소음에 최적화된 성능을 보장할 수 없다. 이러한 문제를 해결하기 위해 제안하는 방법은 대표적 오디오 특성인 멜-스펙트로그램과 스펙트로그램 기반의 시간적 특성 벡터를 사용하여 환경 인지를 진행한다. 본 논문에서는 attack, rotation, sawing으로 구성된 3가지 소음과 speech, tonal로 구성된 2가지 비 소음으로 총 5가지 클래스를 분류한다. 제안하는 방법에서 특성 벡터로 멜-스펙트로그램만을 사용했을 때 87.5%의 분류 성능을 보였으며, 스펙트로그램 기반의 시간적 특성을 추가했을 때 분류 성능이 91.2%로 향상되었다.

  • PDF

Implementation of video structuring system using color and motion information (칼라와 모션 정보를 이용한 비디오 구조화 시스템 구현)

  • 송창준;고한석;권용무
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.11b
    • /
    • pp.123-128
    • /
    • 1999
  • 본 논문에서는 기존에는 샷 경계 검출에 초점을 맞춘 것과는 달리 본 논문에서는 샷 보다 상위레벨인 비디오 씬 추출에 초점을 맞추어 디지털 비디오를 구조화하는 시스템을 제안한다. 샷간의 유사도를 측정하기 위해서 칼라와 모션 특징을 이용하였으며, 비디오 내의 동적 또는 정적 특성을 반영하기 위해서 적응적 가중치를 적용하였다. 칼라 특징을 추출하기 위해서 각 샷의 내부에서 대표 프레임을 추출하였고, 각 샷 내부의 모션 정보는 MPEG 비디오 모션 벡터를 이응해서 추출하였다. 또한, 비디오 씬 분할 시 연산 시간을 줄이기 위한 기법을 제시하였다. 마지막으로 추출된 비디오 씬에 대해서 성능평가를 하였다.

  • PDF

Fuzzy Neural Network Model Using A Learning Rule Considering the Distance Between Classes (클래스간의 거리를 고려한 학습법칙을 사용한 퍼지 신경회로망 모델)

  • Kim Yong-Su;Baek Yong-Seon;Lee Se-Yeol
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.109-112
    • /
    • 2006
  • 본 논문은 클래스들의 대표값들과 입력 벡터와의 거리를 사용한 새로운 퍼지 학습법칙을 제안한다. 이 새로운 퍼지 학습을 supervised IAFC(Integrated Adaptive Fuzzy Clustering) 신경회로망에 적용하였다. 이 새로운 신경회로망은 안정성을 유지하면서도 유연성을 가지고 있다. iris 데이터를 사용하여 테스트한 결과 supervised IAFC 신경회로망 4는 오류 역전파 신경회로망과 LVQ 알고리즘보다 성능이 우수하였다.

  • PDF

Classification of Heart Disease Using K-Nearest Neighbor Imputation (K-최근접 이웃 알고리즘을 활용한 심장병 진단 및 예측)

  • Park, Pyoung-Woo;Lee, Seok-Won
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.742-745
    • /
    • 2017
  • 본 논문은 심장질환 도메인에 데이터 마이닝 기법을 적용한 연구로, 기존 환자의 정보에 대하여 K-최근접 이웃 알고리즘을 통해 결측 값을 대체하고, 대표적인 예측 분류기인 나이브 베이지안, 소포트 벡터 머신, 그리고 다층 퍼셉트론을 적용하여 각각 결과를 비교 및 분석한다. 본 연구의 실험은 K 최적화 과정을 포함하고 10-겹 교차 검증 방식으로 수행되었으며, 비교 및 분석은 정확도와 카파 통계치를 통해 판별한다.

Feature Selection for Document Classifier for IT documents based on SVM (SVM 기반 기술정보 문서분류를 위한 특징 선택 기법)

  • Kang, Yun-Hee
    • Annual Conference of KIPS
    • /
    • 2002.04a
    • /
    • pp.577-580
    • /
    • 2002
  • 인터넷상의 정보의 급증에 따라 필요한 정보를 발견하고 관련된 정보를 조직화하기가 더욱 어려워지고 있으며 정보 접근의 부하를 줄이기 위한 효율적인 문서 분류의 중요성 및 필요성이 증가하고 있다. 본 논문에서는 디렉토리 내의 학습 문서 집합을 기반으로 구성된 디렉토리 내의 대표 용어 집합으로 구성된 모델을 학습 및 분류하기 위해 SVM을 사용한다. 문서분류를 위해 정보통신 웹 디렉토리 내의 문서로부터 추출된 용어 집합을 기반으로 학습을 수행한 후 문서 분류를 수행한다. 또한 TFiDF를 기반으로 특징을 표현하기 위해 벡터공간 모델을 사용하였고 이를 기반으로 성능 평가를 수행한다.

  • PDF

Edge detection and noise removal algorithm (외곽선 검출 및 잡음 제거 알고리즘)

  • Moon, Woo-Hyeok;Jung, Si-Hun
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.945-947
    • /
    • 2021
  • Canny Edge Detection은 필터와 방향벡터를 이용한 대표적인 외곽선 추출 알고리즘으로서 대부분의 외곽선 추출 연구에서 이를 변형하여 사용한다. 그러나 본 논문에서는 외곽선 추출의 전처리 과정으로서 이미지에서의 잡음을 제거하는 알고리즘과 이를 바탕으로 외곽선을 더욱 효율적으로 추출할 수 있는 독창적인 알고리즘을 제시한다.

Self Health Diagnosis Using Neural Networks (신경망을 이용한 자가 진단 시스템)

  • Park, Seong-Yeol;Cho, Jae-Hyun;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.283-288
    • /
    • 2007
  • 본 논문에서는 전문적인 지식이 부족한 일반인들을 대상으로 자신의 건강 상태를 파악 할 수 있는 자가 진단 시스템을 제안한다. 제안한 시스템은 68가지 질병과 각 질병에 대한 대표 증상 데이터 베이스를 이용하여 사용자의 질병을 도출한다. 본 논문에서는 사용자가 자신의 대표증상을 입력하면 해당 증상과 관련 있는 질병만을 자율 학습 방법 신경망인 ART2 알고리즘을 적용하여 클러스터링하고 각 질병의 증상과 관련된 질의 결과를 입력 벡터로 적용하여 사용자의 건강 상태를 진단한다. 사용자의 건강 상태를 진단하는데 있어서 질병과 증상의 정확한 정보는 매우 중요하다. 따라서 데이터베이스를 이용하여 질병과 증상의 정보관리를 유용하게 할 수 있도록 하였다. 제안된 자가 진단시스템을 구현하여 간호학 전문의가 분석한 결과, 본 논문에서 제안한 시스템이 질병의 보조 진단 시스템의 도구로서의 가능성을 확인하였다.

  • PDF

기계학습 및 딥러닝 기술동향

  • Mun, Seong-Eun;Jang, Su-Beom;Lee, Jeong-Hyeok;Lee, Jong-Seok
    • Information and Communications Magazine
    • /
    • v.33 no.10
    • /
    • pp.49-56
    • /
    • 2016
  • 본 논문에서는 패턴 인식 및 회귀 문제를 풀기 위해 쓰이는 기계학습에 대한 전반적인 이론과 설계방법에 대해 알아본다. 대표적인 기계학습 방법인 신경회로망과 기저벡터머신 등에 대해 소개하고 이러한 기계학습 모델을 선택하고 구축하는 데에 있어 고려해야 하는 문제점들에 대해 이야기 한다. 그리고 특징 추출 과정이 기계학습 모델의 성능에 어떻게 영향을 미치는지, 일반적으로 특징 추출을 위해 어떤 방법들이 사용되는 지에 대해 알아본다. 또한, 최근 새로운 패러다임으로 대두되고 있는 딥러닝에 대해 소개한다. 자가인코더, 제한볼츠만기계, 컨볼루션신경회로망, 회귀신경회로망과 같이 딥러닝 기술이 적용된 대표적인 신경망 구조에 대해 설명하고 기존의 기계학습 모델과 비교하여 딥러닝이 가지고 있는 특장점을 알아본다.

Object Recognition using K-Nearest Neighbor (K-Nearest Neighbor를 이용한 물체인식)

  • Jeong, Jea-Young;Kim, Jong-Min;Yang, Hwan-Seok;Lee, Woong-Ki
    • Annual Conference of KIPS
    • /
    • 2005.11a
    • /
    • pp.735-738
    • /
    • 2005
  • 기존의 주성분 분석을 이용한 물체 인식 기술은 모델 영상내의 각각의 물체의 대표 값을 만든 후에 실험 영상을 물체 공간에 투영 시켜서 나온 성분과 대표 값의 거리를 비교하여 인식하게 된다. 그러나 단순히 기존의 방법인 point to point 방식인 단순 거리 계산은 오차가 많기 때문에 본 논문에서는 개선된 Class to Class방식인 k-Nearest Neighbor을 이용하여 몇 개의 연속적인 입력영상에 대해 각 각의 모델영상들을 인식의 단위로 이용하였다. 또한, 물체 인식을 하는데 있어 본 논문에서 제안한 주성분 분석법을 물체 영상 자체를 계산하여 인식하는 게 아니라 물체 영상 공간이라는 고유 공간을 구성한 후에 단지 기여도가 큰 8개의 벡터로만 인식을 수행하기 때문에 자원 축소의 효과까지 얻을 수 있었다.

  • PDF