• Title/Summary/Keyword: 대체 노드

Search Result 123, Processing Time 0.018 seconds

An efficient interconnection network topology in dual-link CC-NUMA systems (이중 연결 구조 CC-NUMA 시스템의 효율적인 상호 연결망 구성 기법)

  • Suh, Hyo-Joong
    • The KIPS Transactions:PartA
    • /
    • v.11A no.1
    • /
    • pp.49-56
    • /
    • 2004
  • The performance of the multiprocessor systems is limited by the several factors. The system performance is affected by the processor speed, memory delay, and interconnection network bandwidth/latency. By the evolution of semiconductor technology, off the shelf microprocessor speed breaks beyond GHz, and the processors can be scalable up to multiprocessor system by connecting through the interconnection networks. In this situation, the system performances are bound by the latencies and the bandwidth of the interconnection networks. SCI, Myrinet, and Gigabit Ethernet are widely adopted as a high-speed interconnection network links for the high performance cluster systems. Performance improvement of the interconnection network can be achieved by the bandwidth extension and the latency minimization. Speed up of the operation clock speed is a simple way to accomplish the bandwidth and latency betterment, while its physical distance makes the difficulties to attain the high frequency clock. Hence the system performance and scalability suffered from the interconnection network limitation. Duplicating the link of the interconnection network is one of the solutions to resolve the bottleneck of the scalable systems. Dual-ring SCI link structure is an example of the interconnection network improvement. In this paper, I propose a network topology and a transaction path algorism, which optimize the latency and the efficiency under the duplicated links. By the simulation results, the proposed structure shows 1.05 to 1.11 times better latency, and exhibits 1.42 to 2.1 times faster execution compared to the dual ring systems.

Studies on the ecological variations of rice plant under the different seasonal cultures -II. A study on the year variations and prediction of heading dates of paddy rice under the different seasonal cultures- (재배시기 이동에 의한 수도의 생태변이에 관한 연구 -II. 재배시기 이동에 의한 수도출수기의 년차간변이와 그 조기예측-)

  • Hyun-Ok Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.3
    • /
    • pp.41-48
    • /
    • 1965
  • This study was aimed at knowing the magnitude of year variation in rice heading dates under the different seasonal cultures, and to estimate the heading date in advance. Using six rice varieties such as Kwansan, Suwon#82, Suwon #144, Norin#17, Yukoo#132 and Paltal, the early, ordinary and late seasonal cultures had been carried out at Paddy Crop Division, Crop Experiment Station at Suwon for the six-year period 1959 to 1964. In addition the data of the standard rice cultures at the Provincial Offices of Rural Development for the 12-year period 1953 to 1954, were analyzed for the purpose of clarifying a relationship between variation of rice heading dates and some of meteorological data related to the locations and years. The results of this study are as follows: 1. Year variation of rice heading dates was as high as 14 to 21 days in the early seasonal culture and 7 to 14 days in the ordinary seasonal culture, while as low as one to seven days in the late seasonal culture which was the lowest among three cultures. The magnitude of variation depended greatly on variety, cultural season and location. 2. It was found out that there was a close negative correlation between the accumulated average air temperature for 40 days from 31 days after seeding and number of days to heading in the early seasonal culture. Accordingly, it was considered possible to predict the rice heading date through calculation of the accumulated average air temperature for the above period and then the linear regression(Y=a+bx). On the other hand, an estimation of the heading date in the late seasonal culture requires for the further studies. In the ordinary seasonal culture, no significant correlation between the accumulated average air temperature and number of days to heading was obtained in the six-year experiments conducted at Suwon. There was a varietal difference in relationship between the accumulated average air temperature for 70 days from seeding and number of days to heading in the standard cultures at the provincial offices of rural development. Some of varieties showed a significant correlation between two factors while the others didn't show any significant correlation. However, there was no regional difference in this relationship.

  • PDF

Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery (초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정)

  • Kang, Ye-Seong;Park, Jun-Woo;Jang, Si-Hyeong;Song, Hye-Young;Kang, Kyung-Suk;Ryu, Chan-Seok;Kim, Seong-Heon;Jun, Sae-Rom;Kang, Tae-Hwan;Kim, Gul-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.15-33
    • /
    • 2021
  • In this study, the possibility of discriminating Fire blight (FB) infection tested using the hyperspectral imagery. The reflectance of healthy and infected leaves and branches was acquired with 5 nm of full width at high maximum (FWHM) and then it was standardized to 10 nm, 25 nm, 50 nm, and 80 nm of FWHM. The standardized samples were divided into training and test sets at ratios of 7:3, 5:5 and 3:7 to find the optimal bands of FWHM by the decision tree analysis. Classification accuracy was evaluated using overall accuracy (OA) and kappa coefficient (KC). The hyperspectral reflectance of infected leaves and branches was significantly lower than those of healthy green, red-edge (RE) and near infrared (NIR) regions. The bands selected for the first node were generally 750 and 800 nm; these were used to identify the infection of leaves and branches, respectively. The accuracy of the classifier was higher in the 7:3 ratio. Four bands with 50 nm of FWHM (450, 650, 750, and 950 nm) might be reasonable because the difference in the recalculated accuracy between 8 bands with 10 nm of FWHM (440, 580, 640, 660, 680, 710, 730, and 740 nm) and 4 bands was only 1.8% for OA and 4.1% for KC, respectively. Finally, adding two bands (550 nm and 800 nm with 25 nm of FWHM) in four bands with 50 nm of FWHM have been proposed to improve the usability of multispectral image sensors with performing various roles in agriculture as well as detecting FB with other combinations of spectral bands.