• Title/Summary/Keyword: 대차주행

Search Result 94, Processing Time 0.025 seconds

Curvature Estimation Method of Curve Section Using Relative Displacement Between Body and Bogie of Rolling-stock (철도차량 차체/대차간 상대변위를 이용한 곡선구간 곡률반경 추정 방법)

  • Hur, Hyun-Moo;Park, Joon-Hyuk;You, Won-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1479-1485
    • /
    • 2012
  • The development of a technique for the real-time sensing of a curve section is very important for active rolling-stocks in order to improve the curving performance. However, conventional methods using expensive track inspection equipment or various complex sensors are not practicable to be applied to commercial vehicles. Therefore, we have proposed a new method to estimate the curve radius of a curve section. This method uses the relative displacements occurring between the body and the bogie when the rolling-stock is running on a curve. To verify the validity of this method, we conducted a vehicle dynamics simulation and test using a real vehicle on a test line. The results confirmed the validity of the proposed method. We expect that this method will be effectively applied in studies of active rolling-stocks to increase the curving performance using active control technology.

Lateral Damper of Subway Vehicle for Preventing Abnormal Impact (지하철 전동차 비정상 충격 방지를 위한 횡댐퍼에 관한 연구)

  • Shin, Yujeong;You, Wonhee;Park, Joonhyuk;Hur, Hyunmoo;Jeon, Juyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.17-23
    • /
    • 2013
  • In a subway vehicle, a lateral damper is used for compensating the lateral stiffness deterioration due to the air-spring as a secondary suspension. This lateral damper can reduce the lateral vibration of the carbody. When the damping force of the lateral damper is lowered, the running stability and ride quality of the subway vehicles worsens and the lateral motion of the carbody is increased. In this study, the lateral displacement variation of the carbody according to the damping force of the lateral damper was analyzed by multi-body dynamics to solve the abnormal impact problem during vehicle operation. Furthermore, the noise and vibration due to abnormal impact were considered. An adequate damping coefficient of the lateral damper for the subway vehicle treated in this paper was suggested for preventing abnormal impact.

Verifying of steering performance of the steering bogie (조향대차의 곡선선로 주행시 조향성능 검토)

  • Kim, Jung-Ha;Yang, Hee-Joo;Ahn, Jae-Kwang
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1069-1073
    • /
    • 2011
  • When the train is running on the small curved line, there would be severe contact between the rail and wheels, which cause noise and vibration as well as abnormal wear on the rail and the wheels. In order to solve these problems, the steering bogie has been developed. To verify steering performance of the steering bogie, steering angles of two trains, one is the advanced EMU with the steering bogie, another is a conventional EMU with the conventional bogie, were measured while running on the small curve. this comparing test shows that the steering bogie has much higher steering performance than the conventional bogie on the same curved line. To verify more performance data of the steering bogie, further testing and monitoring will be done with the advanced EMU in the test track.

  • PDF

An Analysis of Dynamic Characteristics for Running Safety Improvement of the Rubber Tired AGT Localization Bogie (고무차륜 경량전철 국산화 대차의 주행안전성 향상을 위한 동특성 해석)

  • Eom, Beom-Gyu;Han, Byeong-Yeon;An, Cheon-Heon;Kang, Bu-Byoung;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1894-1904
    • /
    • 2011
  • The Light Rail Transit (LRT) System which has medium transport capacity between subway and bus(5,000-25,000 persons per hour) is the most advanced transportation system. It has many benefits, cheap construction, operational costs through driverless and flexible route planning. Also, the rubber tired AGT (K-AGT) of various LRT has a rubber wheels and side guide. The side guide type has an many advantages. but occur a vibration and friction noise through contact between guide rail and wheel. Most of point that decreased comport is vibration thorough the guide contact. In this paper, It is purpose to improve the maximum running speed of rubber tired AGT localization bogie which is currently developed from 70km/h to 80km/h. To satisfy comport index of railway vehicle that is required in performance test. we examined coefficient of bogie suspension which is designed.

  • PDF

Vibration characteristics test of two types bogie frame of a freight car on Kyeungbu line (경부선을 주행하는 두 종류의 화차 대차프레임의 진동특성시험 및 진동증가 원인파악에 관한 연구)

  • 홍재성;함영삼;백영남;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1323-1326
    • /
    • 2004
  • A bogie frame of welded type have some problems. Some end beam has cracked. The cracks have profound influence on the safe freight service. The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, and running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance and the running safety. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the existing bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one. In this reports, the vibration characteristics were dealed with the most pressing matters for the solution of the end beam crack.

  • PDF

A Study on the Factors Influencing the Abnormal Vibration of the Lateral Direction in Railway Vehicles Caused by Hysteresis of Critical Speed (임계속도 이력현상에 의한 철도차량 횡방향 이상 진동에 영향을 미치는 인자들에 관한 연구)

  • 정우진;심재경;조동현
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.265-275
    • /
    • 2001
  • This research has been performed to reveal the hysteresis phenomena of the hunting motion in a railway passenger cars. It is found that there are some factors and its operation region to make the nonlinear critical speed reacts to them more sensitively than the linear critical speed. The simulation results show that a self steering bogie system can be a substitute proposal to improve curving Performance together with the reduction of hysteresis of critical speed. Full scale roller rig test is carried out for the validation of the numerical results. Finally, it is certified that wear of wheel profile and stiffness discontinuities of wheelset suspension caused by deterioration have to be considered in the analysis to predict the hysteresis of critical speed precisely.

  • PDF

A Study on the Characteristics of the Wheel/Roller Contact Geometry (차륜/궤조륜 기하학적 접촉특성에 관한 연구)

  • Hur, Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.618-623
    • /
    • 2006
  • Understanding the contact between wheel and rail is a starting point in railway vehicle dynamic research area and especially analysis for the contact geometry between wheel and rail is important. On the one hand, the critical speed as the natural characteristics of rolling-stock is generally tested on the roller rig. The geometrical characteristics of the wheel/roller contact on the roller rig are different from these of the general wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. Thus, in this paper we developed the algorithm to analyze the wheel/roller contact geometry of our roller rig which is constructed now and analyzed the difference between whee/roller contact and wheel/rail contact. In conclusion, we found that the yaw motion of wheelset and the roller radius influence the geometrical contact parameters in wheel flange contact area.

Bogie instability sensor using simulator for movement safety of the high speed train (고속열차 주행 안전성 시험을 위해 시뮬레이터로 구현한 대차 불안정 센서)

  • Choi, Kwon-Hee;Kim, Kuk-Jin;Lee, Byung-Won;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1403-1407
    • /
    • 2007
  • The bogie of Rolling Stock is the basic rolling component. It operates the train body, guides the body considering various tracks and offers comfort to passengers. We can verify the safety level of bogie about all factors through the first -grade scenario of Preliminary Hazard Analysis, but especially the horizontal acceleration sensor, equipped in each power bogie and trailer bogie, is the device, which makes it possible to test bogie instability and uncomfortable body movements by the method, similar to actual train driving, and in this context the necessity of this device becomes important. This paper would classify the main functions of driving sub system and examine the reliability, availability, maintainability and safety, which are main factors of RAMS. Especially, we would realize the bogie instability sensor with a simulator and offer the content in analyzing the data by the statistical method, which are obtained through the connected test with OBCS.

  • PDF

The study on the design and mechanical characteristics of bogie for Korean tilting train (한국형 틸팅차량(TTX)용 주행장치 설계 및 구조특성에 관한 연구)

  • 구동회;고태환;김남포
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.389-393
    • /
    • 2004
  • Tilting bogie system allow the train to pass curve at higher speed without affecting passenger comfort. As the tilting trains offer the optimum means of providing faster and more comfortable rail service with minimum of environmental disturbance and capital investment, more than 14 countries have now adopted or are about to adopt tilting train technology. The Korean National Railroad is also planing to apply faster tilting train to the areas where the High speed rail service are not provided. This paper describes the design and mechanical characteristics of Bogie for 180 km/h Korean Tilting Train(TTX), which was done as a part of the Korean National R&D project.

  • PDF

The Dynamic Performance Analysis of Bogie Stabilizer (준고속 열차 대차의 Stabilizer 주행성능 분석)

  • Kim, Nam-Po;Kim, Seog-Won
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1550-1556
    • /
    • 2009
  • The sophisticated technologies, ensuring both stability and curving performance, are required for the medium high speed train running on conventional railway line where tangent and curved section mixed together. We can hardly meet the both requirements conflicting each other with the conventional type of bogie. Effective solution is to apply stabilizing mechanism for the bogie design, which increase hunting stability or dynamically critical speed while maintaining curving performance. In this research the numerical analysis by means of multi-body dynamic simulation S/W, experiments by using roller test rig and main line running test have been comprehensively performed for the 200km/h Korean Tilting Train with newly developed stabilizer. The paper proposes the effectiveness of stabilizer and its usefulness based on the results of analyses.

  • PDF