• Title/Summary/Keyword: 대차제어 주행제어

Search Result 14, Processing Time 0.025 seconds

Review on the Bogie Control System of Automated Intermodal Freight Transport System (인터모달 화물운송시스템의 대차주행제어기술에 대한 고찰)

  • Kim, Tae-Young;An, Youn-Mo;Lee, Jae-Won;Ryu, Hyung-Geun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.72-73
    • /
    • 2017
  • 인터모달 자동화물운송시스템 기술개발에 있어서 대차의 안정적인 운행이 가능하도록 전자적 신호를 통하여 차량의 구동을 제어하고 원격제어가 가능하도록 통신설비를 구축을 위한 대차주행제어시스템 기술에 대한 전반적인 기술검토를 추진하였다.

  • PDF

Construction of the Obstacle Detection Systems for a Scaled Steering Bogie (축소 조향대차의 장애물 검지시스템 구축)

  • Kim, Minl-Soo;Hur, Hyun-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1757_1758
    • /
    • 2009
  • 본 논문에서는 철도차량의 능동조향시스템 연구를 위한 축소 조향대차의 장애물 검지시스템 구축에 대여 연구하였다. 철도차량에서 능동조향이란 곡선부 주행 시 차륜/레일 접촉에 의한 승차감 저하 및 차륜/레일의 마모와 소음을 줄이고, 고속주행을 위한 조향성능 및 주행안정성을 확보하기 위한 휠셋의 제어기술이다. 따라서 논문에서는 조향제어전략 및 제어기법을 연구하기 위한 축소 차량모델(견인대차와 조향대차로 구성)의 개발과정으로서 자동운전을 위한 장애물 검지시스템에 대한 연구를 수행하였으며 주행실험을 통해 그 성능을 검증하였다.

  • PDF

Magnetic Levitation Control through the Introduction of Bogie Pitch Motion into a Control Law (대차 피치운동을 반영한 흡인식 자기부상제어)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Jo, Jeong-Min;Lim, JaeWon;Han, Hyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • The uneven reaction surface profile facing the lift magnets in attractive Maglev vehicles naturally brings about pitch motion of the bogie. In particular, in the placement configuration of the long stator of the linear synchronous motor (LSM) on the track for high-speed propulsion, surface irregularities and the offsets between the stator packs create measurable airgaps, i.e., the clearance between the magnet and the stator, with discontinuously extreme values, resulting in bogie pitch motion. This occurs because the airgap velocities and accelerations derived by the differentiations of the measured air-gaps are used to determine the voltages applied to the magnets. This paper incorporates bogie pitch motion into a control law for each magnet controller to reduce the variations in both the airgap and the pitch angle. The effectiveness of the proposed method is analyzed using a full-scale Maglev vehicle running over a test track.

A Model Predictive Tracking Control Algorithm of Autonomous Truck Based on Object State Estimation Using Extended Kalman Filter (확장 칼만 필터를 이용한 대상 상태 추정 기반 자율주행 대차의 모델 예측 추종 제어 알고리즘)

  • Song, Taejun;Lee, Hyewon;Oh, Kwangseok
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study presented a model predictive tracking control algorithm of autonomous truck based on object state estimation using extended Kalman filter. To design the model, the 1-layer laser scanner was used to estimate position and velocity of the object using extended Kalman filter. Based on these estimations, the desired linear path for object tracking was computed. The lateral and yaw angle errors were computed using the computed linear path and relative positions of the truck. The computed errors were used in the model predictive control algorithm to compute the optimal steering angle for object tracking. The performance evaluation was conducted on Matlab/Simulink environments using planar truck model and actual point data obtained from laser scanner. The evaluation results showed that the tracking control algorithm developed in this study can track the object reasonably based on the model predictive control algorithm based on the estimated states.

Concept Design of an Active Steering Bogie for Urban Railway Vehicles (도시형 전동차용 능동조향대차의 개념설계)

  • Park, Joon-Hyuk;Hur, Hyun-Moo;Koh, Hyo-In;You, Won-Hee
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.709-716
    • /
    • 2007
  • An active steering bogie has been theoretically proved to improve both stability and steering performance remarkably. However, It has not been commercialized yet even though many researchers have been trying to develop it because some technical difficulties still exist such as information acquisition fer active control, increasing mechanical components, high energy consumption, fail-safe problem and so on. To solve those problems, an advanced active steering mechanism is proposed in this paper. With this mechanism, required control force is small enough to use direct drives. Therefore, the number of additional mechanical components can be minimized since mechanical transducers like gears are not necessary. Fail-safe function can be also inserted easily. In this paper, concept design of the proposed active steering bogie is introduced and the possibility is verified through computer simulation using linear dynamic model.

Tele-operation System of Unmaned Fire Truck for Real-time Fire Suppression (실시간 화재진압을 위한 원격조종 무인소방 시스템)

  • Kang, Byoung Hun;Lee, Seung-Chol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.1-6
    • /
    • 2022
  • In this research, we suggest a real-time tele-driving system for unmanned fire truck control using the LTE communication system. The operator located in the safe area could drive the unmaned fire truck by implementing the secure tele-operation in case of the emergencies and disaster situation. A prototype of the unmaned fire truck was developed with a fire canon, a high pressure pump, a ball valve and a horse reel. The effect of time delay and FPS was quantified depending on the image sizes and the effective system for realtime tele-operation was suggested. To verify the suggested system, the test was performed between an operator and an unmanned fire truck which is approximately 30km apart. In this research, the immersion tele-driving system is suggested for real-time fire suppression with a 120ms time delay using LTE communication.

Effect of Damper Between Maglev Vehicles on Curve Negotiation (자기부상열차 차간 댐퍼의 곡선주행에의 효과 분석)

  • Kim, Ki-Jung;Han, Hyung-Suk;Kim, Chang-Hyun;Yang, Seok-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.581-587
    • /
    • 2013
  • In a magnetic train set composed of more than two cars, the installation of dampers between cars is carefully considered for improving both the ride quality and the safety, particularly during curve negotiation. In this study, a dynamic simulation of the ride quality and curve negotiation of a Maglev vehicle was carried out. The dynamic model is developed based on multibody dynamics. The presented full vehicle multibody dynamic model integrates the electromagnet model and its control algorithm. By using this model, the effects of the dampers are numerically analyzed. The proposed damper is installed on the vehicle and tested to analyze its effects. In this study, the simulation and measured results of the vehicle behavior and ride quality are discussed.

Development of the Small Scale Testbed for Running Dynamic Characteristics Analysis of the Capsule Train (캡슐트레인 주행 동특성 분석을 위한 축소 시험장치의 개발)

  • Lee, Jin-Ho;You, Won-Hee;Lee, Kwansup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.643-651
    • /
    • 2020
  • A capsule train runs inside a sub-vacuum tube and can reach very high speed due to the low air resistance. A capsule train uses a superconducting electrodynamic suspension (SC-EDS) method for levitation, which allows for a large levitation gap and does not require gap control. However, SC-EDS has inherent characteristics such as the large gap variation and a small damping effect in the levitation force, which can degrade the running stability and ride comfort. To overcome this, a stability improvement device should be designed and applied based on dynamic analysis. In this study, a 1/10 small-scale testbed was developed to replicate the dynamic characteristics of a capsule train and investigate the performance of stability improvement devices. The testbed is composed of a 6-degree-of-freedom Stewart platform for the realization of bogie motion, a secondary suspension with a running stabilization device, and a carbody. Based on the dynamic similarity law proposed by Jaschinski, the small-scale testbed was manufactured, and a bogie motion algorithm was applied with the consideration of guideway irregularity and levitation stiffness. The experimental results from the testbed were compared with simulation results to investigate the performance of the testbed.

Design and Experiment of Automatic Painting Robot Using Permanent Magnet Mobile Robot in Ship Cargo Tank (자석대차를 이용한 화물창 내 자동 도장로봇에 대한 연구)

  • Han, Seung-Chul;Kim, Jin-Ho;Kim, Je-Hoon;Lee, Sung-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5450-5456
    • /
    • 2011
  • In order to build a ship, painting on ship cargo tank is one of the most dangerous parts as it involves working in high altitudes and a closed ship cargo tank. Therefore, researchers have been developing devices that will enable mobile robots to operate on vertical walls. The wall-climbing robots have been widely used to attach on the wall such as suction types. These types can be utilized regardless of the wall material. However, it is required to adhere and control the suction cups. To moderate this drawbacks, this paper proposes an automatic painting robot that uses a permanent magnet mobile robot. Using the magnetic characteristics, this robot can move on the boat vertically and horizontally even while hanging on the ceiling of the ship cargo tank. Also, we made a prototype to test adhesive force of the permanent magnet wheel and mobile robot as well as the towing capacity and auto-piloting ability.