• Title/Summary/Keyword: 대용량 클래스

Search Result 35, Processing Time 0.024 seconds

Technical Trend Analysis of Fingerprint Classification (지문분류 기술 동향 분석)

  • Jung, Hye-Wuk;Lee, Seung
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.9
    • /
    • pp.132-144
    • /
    • 2017
  • The fingerprint classification of categorizing fingerprints by classes should be used in order to improve the processing speed and accuracy in a fingerprint recognition system using a large database. The fingerprint classification methods extract features from the fingerprint ridges of a fingerprint and classify the fingerprint using learning and reasoning techniques based on the classes defined according to the flow and shape of the fingerprint ridges. In earlier days, many researches have been conducted using NIST database acquired by pressing or rolling finger against a paper. However, as automated systems using live-scan scanners for fingerprint recognition have become popular, researches using fingerprint images obtained by live-scan scanners, such as fingerprint data provided by FVC, are increasing. And these days the methods of fingerprint classification using Deep Learning have proposed. In this paper, we investigate the trends of fingerprint classification technology and compare the classification performance of the technology. We desire to assist fingerprint classification research with increasing large fingerprint database in improving the performance by mentioning the necessity of fingerprint classification research with consideration for fingerprint images based on live-scan scanners and analyzing fingerprint classification using deep learning.

An Incremental Method Using Sample Split Points for Global Discretization (전역적 범주화를 위한 샘플 분할 포인트를 이용한 점진적 기법)

  • 한경식;이수원
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.849-858
    • /
    • 2004
  • Most of supervised teaming algorithms could be applied after that continuous variables are transformed to categorical ones at the preprocessing stage in order to avoid the difficulty of processing continuous variables. This preprocessing stage is called global discretization, uses the class distribution list called bins. But, when data are large and the range of the variable to be discretized is very large, many sorting and merging should be performed to produce a single bin because most of global discretization methods need a single bin. Also, if new data are added, they have to perform discretization from scratch to construct categories influenced by the data because the existing methods perform discretization in batch mode. This paper proposes a method that extracts sample points and performs discretization from these sample points in order to solve these problems. Because the approach in this paper does not require merging for producing a single bin, it is efficient when large data are needed to be discretized. In this study, an experiment using real and synthetic datasets was made to compare the proposed method with an existing one.

Appraisal Method for Similarity of Large File Transfer Software (대용량 파일 전송 소프트웨어의 동일성 감정 방법)

  • Chun, Byung-Tae
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.1
    • /
    • pp.11-16
    • /
    • 2021
  • The importance of software is increasing due to the development of information and communication, and software copyright disputes are also increasing. In this paper, the source of the submitted programs and the files necessary for the execution of the program were taken as the scope of analysis. The large-capacity file transfer solution program to be analyzed provides additional functions such as confidentiality, integrity, user authentication, and non-repudiation functions through digital signature and encryption of data.In this paper, we analyze the program A, program B, and the program C. In order to calculate the program similarity rate, the following contents are analyzed. Analyze the similarity of the package structure, package name, source file name in each package, variable name in source file, function name, function implementation source code, and product environment variable information. It also calculates the overall similarity rate of the program. In order to check the degree of agreement between the package structure and the package name, the similarity was determined by comparing the folder structure. It also analyzes the extent to which the package structure and package name match and the extent to which the source file (class) name within each package matches.

Adaptive Burst Size-based Loss Differentiation for Transmitting Massive Medical Data in Optical Internet (광 인터넷에서 대용량 의학 데이터 전송을 위한 적응형 버스트 길이 기반 손실 차등화 기법)

  • Lee, Yonggyu
    • Journal of Digital Convergence
    • /
    • v.20 no.3
    • /
    • pp.389-397
    • /
    • 2022
  • As increasing the growth of the Internet in medical area, a new technology to transmit effectively massive medical data is required. In optical internet, all OBS nodes have fiber delay lines, hardware components. These components are calculated under some optimal traffic conditions, and this means that if the conditions change, then the components should be altered. Therefore, in this article a new service differentiation algorithm using the previously installed components is proposed, which is used although the conditions vary. When traffic conditions change, the algorithm dynamically recalculates the threshold value used to decide the length of data bursts. By doing so, irrelevant to changes, the algorithm can maintain the service differentiation between classes without replacing any fiber delay lines. With the algorithm, loss sensitive medical data can be transferred well.

A Partitioned Evolutionary Algorithm Based on Heuristic Evolution for an Efficient Supervised Fuzzy Clustering (효율적인 지도 퍼지 군집화를 위한 휴리스틱 분할 진화알고리즘)

  • Kim, Sung-Eun;Ryu, Joung-Woo;Kim, Myung-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.667-669
    • /
    • 2005
  • 최근 새로운 데이터마이닝 방법인 지도 군집화가 소개되고 있다. 지도 군집화의 목적은 동일한 클래스가 한 군집에 포함되도록 하는 것이다. 지도 군집화는 데이터에 대한 배경 지식을 획득하거나 분류 방법의 성능을 향상시키기 위한 방법으로 사용된다. 그러나 군집화 방법에서 파생된 지도 군집화 역시 군집화 개수 설정 방법에 따라 효율성이 좌우된다. 따라서 클래스 분포에 따라 최적의 지도 군집화 개수를 찾기 위해 진화알고리즘을 적용할 수 있으나, 진화알고리즘은 대용량 데이터를 처리할 경우 수행 시간이 증가되어 효율성이 감소되는 문제가 있다. 본 논문은 지도 군집화보다 강인한인 지도 퍼지 군집화를 효율적으로 생성하기 위해 진화성이 우수한 휴리스틱 분할 진화알고리즘을 제안한다. 휴리스틱 분할 진화알고리즘은 개체를 생성할 때 문제영역의 지식을 반영한 휴리스틱 연산으로 탐색 시간을 단축시키고, 개체 평가 단계에서 전체 데이터 대신 샘플링된 부분 데이터들을 이용하여 진화하는 분할 진화 방법으로 수행 시간을 단축시킴으로써 진화알고리즘의 효율성을 높인다. 또한 효율적으로 개체를 평가하기 위해 지도 퍼지 군집화 알고리즘인 지도 분할 군집화 알고리즘(SPC: supervised partitional clustering)을 제안한다. 제안한 방법은 이차원 실험 데이터에 대해서 정확성과 효율성을 분석하여 그 타당성을 확인한다.

  • PDF

Enhancement of SATEEC GIS system using ArcP (ArcPy를 이용한 SATEEC모델의 개선)

  • Lee, Gwanjae;Shin, Yongchul;Jung, Younghun;Lim, Kyoung Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.515-515
    • /
    • 2015
  • 토양유실량을 산정하기 위한 모델로 Universsal Soil Loss Equation(USLE)가 전 세계적으로 가장 많이 사용되고 있다. USLE 모형은 농경지에서 면상침식(Sheet erosion)과 세류침식(Rill erosion)을 모의할 수 있는 시험포단위 모형(Field-scale)으로 농경지에서 유실된 토양이 하류 하천으로 얼마나 흘러 들어가 하류 수계의 탁수발생과 이에 따른 수질악화에 얼마나 기여하는지, 즉, 유역단위의 토양유실량을 평가하는데 이용될 수 없다. 이러한 단점을 극복하기 위하여 Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView 시스템이 개발되어 사용되고 있다. SATEEC ArcView 시스템은 USLE모형의 입력자료와 DEM만으로 유역면적에 따른 유달률을 산정하여 유역에서 유실된 토양이 얼마만큼 하류로 유달되는지를 모의할 수 있으며, 유역 경사도에 의한 유달률도 산정할 수 있어 지형적인 특성을 좀 더 다양하게 분석 할 수 있게 개발 되었다. 그러나 ArcView는 출시한지 오래되어 사용자가 많지 않고, 프로그램상의 오류가 많고, 대용량의 데이터 처리가 가능한 64비트 운영체제에서는 설치가 불가능한 단점이 있다. 또한, ArcView의 프로그래밍 언어인 Avenue는 클래스를 정의한다거나 상속을 한다거나 하는 문법을 제공하지 않기 때문에 객체지향 언어로 보기에는 부족하다고 할 수 있다. 또한, 최근의 ArcGIS 기반의 많은 모델들이 서로 연계하여 사용하고 있으나, Avenue는 기타 다른 프로그래밍 언어와 연계하여 사용하기가 쉽지 않은 단점이 있다. 그러나 최근 ArcGIS 버전들의 프로그래밍 언어인 Python은 간결하고 확장성이 좋으며, 다른 언어와의 연계가 쉽다. 또한, ArcGIS 10.x버전부터 제공되는 arcpy 모듈은 사용자와의 접근성이 매우 향상되었다. 따라서 SATEEC ArcView 버전을 ArcGIS 10.1 기반의 Python 으로 재개발하여 기존의 불편한 접근성과 대용량 데이터의 처리가 불가능했던 부분을 개선하였다.

  • PDF

Parallel Processing of k-Means Clustering Algorithm for Unsupervised Classification of Large Satellite Images: A Hybrid Method Using Multicores and a PC-Cluster (대용량 위성영상의 무감독 분류를 위한 k-Means Clustering 알고리즘의 병렬처리: 다중코어와 PC-Cluster를 이용한 Hybrid 방식)

  • Han, Soohee;Song, Jeong Heon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.445-452
    • /
    • 2019
  • In this study, parallel processing codes of k-means clustering algorithm were developed and implemented in a PC-cluster for unsupervised classification of large satellite images. We implemented intra-node code using multicores of CPU (Central Processing Unit) based on OpenMP (Open Multi-Processing), inter-nodes code using a PC-cluster based on message passing interface, and hybrid code using both. The PC-cluster consists of one master node and eight slave nodes, and each node is equipped with eight multicores. Two operating systems, Microsoft Windows and Canonical Ubuntu, were installed in the PC-cluster in turn and tested to compare parallel processing performance. Two multispectral satellite images were tested, which are a medium-capacity LANDSAT 8 OLI (Operational Land Imager) image and a high-capacity Sentinel 2A image. To evaluate the performance of parallel processing, speedup and efficiency were measured. Overall, the speedup was over N / 2 and the efficiency was over 0.5. From the comparison of the two operating systems, the Ubuntu system showed two to three times faster performance. To confirm that the results of the sequential and parallel processing coincide with the other, the center value of each band and the number of classified pixels were compared, and result images were examined by pixel to pixel comparison. It was found that care should be taken to avoid false sharing of OpenMP in intra-node implementation. To process large satellite images in a PC-cluster, code and hardware should be designed to reduce performance degradation caused by file I / O. Also, it was found that performance can differ depending on the operating system installed in a PC-cluster.

One-Class Classification Model Based on Lexical Information and Syntactic Patterns (어휘 정보와 구문 패턴에 기반한 단일 클래스 분류 모델)

  • Lee, Hyeon-gu;Choi, Maengsik;Kim, Harksoo
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.817-822
    • /
    • 2015
  • Relation extraction is an important information extraction technique that can be widely used in areas such as question-answering and knowledge population. Previous studies on relation extraction have been based on supervised machine learning models that need a large amount of training data manually annotated with relation categories. Recently, to reduce the manual annotation efforts for constructing training data, distant supervision methods have been proposed. However, these methods suffer from a drawback: it is difficult to use these methods for collecting negative training data that are necessary for resolving classification problems. To overcome this drawback, we propose a one-class classification model that can be trained without using negative data. The proposed model determines whether an input data item is included in an inner category by using a similarity measure based on lexical information and syntactic patterns in a vector space. In the experiments conducted in this study, the proposed model showed higher performance (an F1-score of 0.6509 and an accuracy of 0.6833) than a representative one-class classification model, one-class SVM(Support Vector Machine).

Comparison of Classification Performance Between Adult and Elderly Using Acoustic and Linguistic Features from Spontaneous Speech (자유대화의 음향적 특징 및 언어적 특징 기반의 성인과 노인 분류 성능 비교)

  • SeungHoon Han;Byung Ok Kang;Sunghee Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.365-370
    • /
    • 2023
  • This paper aims to compare the performance of speech data classification into two groups, adult and elderly, based on the acoustic and linguistic characteristics that change due to aging, such as changes in respiratory patterns, phonation, pitch, frequency, and language expression ability. For acoustic features we used attributes related to the frequency, amplitude, and spectrum of speech voices. As for linguistic features, we extracted hidden state vector representations containing contextual information from the transcription of speech utterances using KoBERT, a Korean pre-trained language model that has shown excellent performance in natural language processing tasks. The classification performance of each model trained based on acoustic and linguistic features was evaluated, and the F1 scores of each model for the two classes, adult and elderly, were examined after address the class imbalance problem by down-sampling. The experimental results showed that using linguistic features provided better performance for classifying adult and elderly than using acoustic features, and even when the class proportions were equal, the classification performance for adult was higher than that for elderly.

전력계통용 파워일렉트로닉스 기기

  • 대한전기협회
    • JOURNAL OF ELECTRICAL WORLD
    • /
    • s.277
    • /
    • pp.69-77
    • /
    • 2000
  • 최근 전력설비 운용상의 여러 가지 과제에 대한 유망한 해결책으로서 파워일렉트로닉스 기기를 사용한 FACTS(Flexible AC Transmission System)가 주목을 받고 있다. 그 중에서도 자려식 변환기를 사용한 FACTS기기는 계통의 유효전력$\cdot$무효전력을 계통의 상태에 의존하지 않고 자유롭게 제어할 수 있어, 계통운용의 유연성을 비약적으로 확대할 수 있는 가능성이 있다. 미쓰비시전기는 전력기기간 계통에서의 자려식 변환기 응용의 파이어니어로서 1991년 간사이전력(주) 태산개폐소에 80Mvar SVG(전지형 무효전력발생장치)를 납품하였으며 또한 자원에너지청의 ''연계강화기술개발'' 보조사업으로 도쿄전력(주)을 비롯하여 전력회사 각사, 전원개발(주)와 (재)전력중앙연구소의 지도 하에 3단자 BTB(Back to Back) 실증시스템용으로 세계 최초의 6인치 GTO(Gate Turn-off Thyristor)를 사용한 53MVA의 자려식 변환기를 제작납품하여 수백MVA 클래스의 자려식변환기 제작기술을 확립하였다. 또한 최근에는 동사가 개발한 신소자 GCT(Gate Commutated Turn-off Thyristor)는 지금까지 대용량 자려식 변환기의 커다란 과제였던 운전손실을 반감할 수 있을 것으로 기대되고 있다. 한편 배전 분야에서는 전압변동, 고조파, 순간전압강하 등의 과제가 증가하고 있어, 미쓰비시전기는 이에 응할 수 있는 파워일렉트로닉스 기기로서 콤팩트 SVG(Static Var Generator), SSTS(Solid-state Transfer Switch), 액티브필너를 다수 납품하여 전력품질문제 해결에 공헌하고 있다.

  • PDF