The fingerprint classification of categorizing fingerprints by classes should be used in order to improve the processing speed and accuracy in a fingerprint recognition system using a large database. The fingerprint classification methods extract features from the fingerprint ridges of a fingerprint and classify the fingerprint using learning and reasoning techniques based on the classes defined according to the flow and shape of the fingerprint ridges. In earlier days, many researches have been conducted using NIST database acquired by pressing or rolling finger against a paper. However, as automated systems using live-scan scanners for fingerprint recognition have become popular, researches using fingerprint images obtained by live-scan scanners, such as fingerprint data provided by FVC, are increasing. And these days the methods of fingerprint classification using Deep Learning have proposed. In this paper, we investigate the trends of fingerprint classification technology and compare the classification performance of the technology. We desire to assist fingerprint classification research with increasing large fingerprint database in improving the performance by mentioning the necessity of fingerprint classification research with consideration for fingerprint images based on live-scan scanners and analyzing fingerprint classification using deep learning.
Most of supervised teaming algorithms could be applied after that continuous variables are transformed to categorical ones at the preprocessing stage in order to avoid the difficulty of processing continuous variables. This preprocessing stage is called global discretization, uses the class distribution list called bins. But, when data are large and the range of the variable to be discretized is very large, many sorting and merging should be performed to produce a single bin because most of global discretization methods need a single bin. Also, if new data are added, they have to perform discretization from scratch to construct categories influenced by the data because the existing methods perform discretization in batch mode. This paper proposes a method that extracts sample points and performs discretization from these sample points in order to solve these problems. Because the approach in this paper does not require merging for producing a single bin, it is efficient when large data are needed to be discretized. In this study, an experiment using real and synthetic datasets was made to compare the proposed method with an existing one.
The importance of software is increasing due to the development of information and communication, and software copyright disputes are also increasing. In this paper, the source of the submitted programs and the files necessary for the execution of the program were taken as the scope of analysis. The large-capacity file transfer solution program to be analyzed provides additional functions such as confidentiality, integrity, user authentication, and non-repudiation functions through digital signature and encryption of data.In this paper, we analyze the program A, program B, and the program C. In order to calculate the program similarity rate, the following contents are analyzed. Analyze the similarity of the package structure, package name, source file name in each package, variable name in source file, function name, function implementation source code, and product environment variable information. It also calculates the overall similarity rate of the program. In order to check the degree of agreement between the package structure and the package name, the similarity was determined by comparing the folder structure. It also analyzes the extent to which the package structure and package name match and the extent to which the source file (class) name within each package matches.
As increasing the growth of the Internet in medical area, a new technology to transmit effectively massive medical data is required. In optical internet, all OBS nodes have fiber delay lines, hardware components. These components are calculated under some optimal traffic conditions, and this means that if the conditions change, then the components should be altered. Therefore, in this article a new service differentiation algorithm using the previously installed components is proposed, which is used although the conditions vary. When traffic conditions change, the algorithm dynamically recalculates the threshold value used to decide the length of data bursts. By doing so, irrelevant to changes, the algorithm can maintain the service differentiation between classes without replacing any fiber delay lines. With the algorithm, loss sensitive medical data can be transferred well.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.667-669
/
2005
최근 새로운 데이터마이닝 방법인 지도 군집화가 소개되고 있다. 지도 군집화의 목적은 동일한 클래스가 한 군집에 포함되도록 하는 것이다. 지도 군집화는 데이터에 대한 배경 지식을 획득하거나 분류 방법의 성능을 향상시키기 위한 방법으로 사용된다. 그러나 군집화 방법에서 파생된 지도 군집화 역시 군집화 개수 설정 방법에 따라 효율성이 좌우된다. 따라서 클래스 분포에 따라 최적의 지도 군집화 개수를 찾기 위해 진화알고리즘을 적용할 수 있으나, 진화알고리즘은 대용량 데이터를 처리할 경우 수행 시간이 증가되어 효율성이 감소되는 문제가 있다. 본 논문은 지도 군집화보다 강인한인 지도 퍼지 군집화를 효율적으로 생성하기 위해 진화성이 우수한 휴리스틱 분할 진화알고리즘을 제안한다. 휴리스틱 분할 진화알고리즘은 개체를 생성할 때 문제영역의 지식을 반영한 휴리스틱 연산으로 탐색 시간을 단축시키고, 개체 평가 단계에서 전체 데이터 대신 샘플링된 부분 데이터들을 이용하여 진화하는 분할 진화 방법으로 수행 시간을 단축시킴으로써 진화알고리즘의 효율성을 높인다. 또한 효율적으로 개체를 평가하기 위해 지도 퍼지 군집화 알고리즘인 지도 분할 군집화 알고리즘(SPC: supervised partitional clustering)을 제안한다. 제안한 방법은 이차원 실험 데이터에 대해서 정확성과 효율성을 분석하여 그 타당성을 확인한다.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.515-515
/
2015
토양유실량을 산정하기 위한 모델로 Universsal Soil Loss Equation(USLE)가 전 세계적으로 가장 많이 사용되고 있다. USLE 모형은 농경지에서 면상침식(Sheet erosion)과 세류침식(Rill erosion)을 모의할 수 있는 시험포단위 모형(Field-scale)으로 농경지에서 유실된 토양이 하류 하천으로 얼마나 흘러 들어가 하류 수계의 탁수발생과 이에 따른 수질악화에 얼마나 기여하는지, 즉, 유역단위의 토양유실량을 평가하는데 이용될 수 없다. 이러한 단점을 극복하기 위하여 Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView 시스템이 개발되어 사용되고 있다. SATEEC ArcView 시스템은 USLE모형의 입력자료와 DEM만으로 유역면적에 따른 유달률을 산정하여 유역에서 유실된 토양이 얼마만큼 하류로 유달되는지를 모의할 수 있으며, 유역 경사도에 의한 유달률도 산정할 수 있어 지형적인 특성을 좀 더 다양하게 분석 할 수 있게 개발 되었다. 그러나 ArcView는 출시한지 오래되어 사용자가 많지 않고, 프로그램상의 오류가 많고, 대용량의 데이터 처리가 가능한 64비트 운영체제에서는 설치가 불가능한 단점이 있다. 또한, ArcView의 프로그래밍 언어인 Avenue는 클래스를 정의한다거나 상속을 한다거나 하는 문법을 제공하지 않기 때문에 객체지향 언어로 보기에는 부족하다고 할 수 있다. 또한, 최근의 ArcGIS 기반의 많은 모델들이 서로 연계하여 사용하고 있으나, Avenue는 기타 다른 프로그래밍 언어와 연계하여 사용하기가 쉽지 않은 단점이 있다. 그러나 최근 ArcGIS 버전들의 프로그래밍 언어인 Python은 간결하고 확장성이 좋으며, 다른 언어와의 연계가 쉽다. 또한, ArcGIS 10.x버전부터 제공되는 arcpy 모듈은 사용자와의 접근성이 매우 향상되었다. 따라서 SATEEC ArcView 버전을 ArcGIS 10.1 기반의 Python 으로 재개발하여 기존의 불편한 접근성과 대용량 데이터의 처리가 불가능했던 부분을 개선하였다.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.37
no.6
/
pp.445-452
/
2019
In this study, parallel processing codes of k-means clustering algorithm were developed and implemented in a PC-cluster for unsupervised classification of large satellite images. We implemented intra-node code using multicores of CPU (Central Processing Unit) based on OpenMP (Open Multi-Processing), inter-nodes code using a PC-cluster based on message passing interface, and hybrid code using both. The PC-cluster consists of one master node and eight slave nodes, and each node is equipped with eight multicores. Two operating systems, Microsoft Windows and Canonical Ubuntu, were installed in the PC-cluster in turn and tested to compare parallel processing performance. Two multispectral satellite images were tested, which are a medium-capacity LANDSAT 8 OLI (Operational Land Imager) image and a high-capacity Sentinel 2A image. To evaluate the performance of parallel processing, speedup and efficiency were measured. Overall, the speedup was over N / 2 and the efficiency was over 0.5. From the comparison of the two operating systems, the Ubuntu system showed two to three times faster performance. To confirm that the results of the sequential and parallel processing coincide with the other, the center value of each band and the number of classified pixels were compared, and result images were examined by pixel to pixel comparison. It was found that care should be taken to avoid false sharing of OpenMP in intra-node implementation. To process large satellite images in a PC-cluster, code and hardware should be designed to reduce performance degradation caused by file I / O. Also, it was found that performance can differ depending on the operating system installed in a PC-cluster.
Relation extraction is an important information extraction technique that can be widely used in areas such as question-answering and knowledge population. Previous studies on relation extraction have been based on supervised machine learning models that need a large amount of training data manually annotated with relation categories. Recently, to reduce the manual annotation efforts for constructing training data, distant supervision methods have been proposed. However, these methods suffer from a drawback: it is difficult to use these methods for collecting negative training data that are necessary for resolving classification problems. To overcome this drawback, we propose a one-class classification model that can be trained without using negative data. The proposed model determines whether an input data item is included in an inner category by using a similarity measure based on lexical information and syntactic patterns in a vector space. In the experiments conducted in this study, the proposed model showed higher performance (an F1-score of 0.6509 and an accuracy of 0.6833) than a representative one-class classification model, one-class SVM(Support Vector Machine).
KIPS Transactions on Software and Data Engineering
/
v.12
no.8
/
pp.365-370
/
2023
This paper aims to compare the performance of speech data classification into two groups, adult and elderly, based on the acoustic and linguistic characteristics that change due to aging, such as changes in respiratory patterns, phonation, pitch, frequency, and language expression ability. For acoustic features we used attributes related to the frequency, amplitude, and spectrum of speech voices. As for linguistic features, we extracted hidden state vector representations containing contextual information from the transcription of speech utterances using KoBERT, a Korean pre-trained language model that has shown excellent performance in natural language processing tasks. The classification performance of each model trained based on acoustic and linguistic features was evaluated, and the F1 scores of each model for the two classes, adult and elderly, were examined after address the class imbalance problem by down-sampling. The experimental results showed that using linguistic features provided better performance for classifying adult and elderly than using acoustic features, and even when the class proportions were equal, the classification performance for adult was higher than that for elderly.
최근 전력설비 운용상의 여러 가지 과제에 대한 유망한 해결책으로서 파워일렉트로닉스 기기를 사용한 FACTS(Flexible AC Transmission System)가 주목을 받고 있다. 그 중에서도 자려식 변환기를 사용한 FACTS기기는 계통의 유효전력$\cdot$무효전력을 계통의 상태에 의존하지 않고 자유롭게 제어할 수 있어, 계통운용의 유연성을 비약적으로 확대할 수 있는 가능성이 있다. 미쓰비시전기는 전력기기간 계통에서의 자려식 변환기 응용의 파이어니어로서 1991년 간사이전력(주) 태산개폐소에 80Mvar SVG(전지형 무효전력발생장치)를 납품하였으며 또한 자원에너지청의 ''연계강화기술개발'' 보조사업으로 도쿄전력(주)을 비롯하여 전력회사 각사, 전원개발(주)와 (재)전력중앙연구소의 지도 하에 3단자 BTB(Back to Back) 실증시스템용으로 세계 최초의 6인치 GTO(Gate Turn-off Thyristor)를 사용한 53MVA의 자려식 변환기를 제작납품하여 수백MVA 클래스의 자려식변환기 제작기술을 확립하였다. 또한 최근에는 동사가 개발한 신소자 GCT(Gate Commutated Turn-off Thyristor)는 지금까지 대용량 자려식 변환기의 커다란 과제였던 운전손실을 반감할 수 있을 것으로 기대되고 있다. 한편 배전 분야에서는 전압변동, 고조파, 순간전압강하 등의 과제가 증가하고 있어, 미쓰비시전기는 이에 응할 수 있는 파워일렉트로닉스 기기로서 콤팩트 SVG(Static Var Generator), SSTS(Solid-state Transfer Switch), 액티브필너를 다수 납품하여 전력품질문제 해결에 공헌하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.