Car-sharing services are one of the successful model of sharing economies. The car-sharing service is a kind of car rental service that can pay the cost per minutes, also can makes it easy to book and return by smart phone at any time. Experts predict that the car-sharing services will likely dominate the auto market in the future by reducing the burden on consumers' purchasing cost of car and resolving the environmental issues caused by the vehicle. Therefore, a differentiated service strategy is needed to establish a competitive caching service among these companies. In this study, we surveyed differentiation cases by comparing and analyzing domestic caching companies, And customized service tailored to the situation and effective vehicle type infotainment. As a result of this study, the proposed service method change, customized service provision, and new platform application are expected to be detailed and in depth.
Proceedings of the Korean Operations and Management Science Society Conference
/
1993.04a
/
pp.483-492
/
1993
미래의 차의 선택사항이 될 여행정보시스템을 설치하여 그 성능의 인간공학적 조사를 수행하였다. 이 시스템을 실제로 GM자동차 Oldsmobile Toronado형 100대에 설치하여 사용자가 얼마나 쉽게, 빨리 그리고 안락하게 갈 수 있고, 어떻게 하면 좀 더 이것을 인간공학적으로 향상시킬수 있는 가를 연구하였다. 100대중 23대는 대학교에서 연구를 하고 나머지는 AAA회사의 회원권을 가진 지역사용자들에게 AAA회사와 AVIS회사를 통하여 대여를 하여 컴퓨터차(TravTek시스템)의 성능과 효율성을 시험하였다. 그 내용을 살펴보면, 차에 부착된 컴퓨터의 컬러화면으로 사용자에게 도로를 보여주고, 컴퓨터가 최단거리를 제시하여 운전자에게 컴퓨터음성과 화면으로 길을 안내한다. 그 파급효과로 도로 체증현상을 막고, 기름의 낭비도 절약하고, 밤에도 안전하게 운행할 수 있게 할 뿐만아니라 처음보는 거리라고 하더라도 컴퓨터가 안내하면서 목적지까지 무사히 도착할 수 있게 하여 준다. 이러한 시스템을 설치한 차를 타고 여행할 때, 여행자가 과연 얼마나 안락하게 여행할 수 있으며, 도로의 체증현상을 줄이고, 사고를 예방하며, 차의 설계와 목적이 인간공학적으로 합당한 가를 알아보고자 하는 연구이다. 인간공학적 평가 인자들은 (1) 운전자의 수행도, (2) 사용자 선호도, (3) 사용자 인식, (4) 운행정보등이다. 그리고 컴퓨터음성을 사용하였을 때와 사용하지 않았을 때의 두가지 경우와 (1) 움직이는 컴퓨터지도를 사용하였을 때 (2) 단순화한 도로안내를 사용하였을 때, (3) 컴퓨터 지도를 사용하지 않았을 경우(종이지도사용)에 관해 위의 4가지 인간공학적 인자들을 평가하고자 한다. 이 연구는 아직도 진행중이라 발표하고자 하는 논문역시 현재까지의 연구결과를 토대로 발표하는 것이므로 완전한 결론을 내릴 수는 없고, 진행과 정의내용과 토의사항과 잠정적인 결론을 제시하고자 한다. 의거한 작업순서 결정을 위해 우선 BB의 상한을 구하는 연구를 행했다. 이를 위해 우선 단일작업장에서 야기될 수 있는 모든 상황을 고려한 최적 작업순서 결정규칙을 연구했으며, 이의 증명을 위해 이 규칙에 의거했을 때의 보완작업량이 최소가 된다는 것을 밝혔다. 보완작업 계산의 효율성을 제고하기 위해 과부하(violation)개념을 도입하였으며, 작업유형이 증가된 상황에서도 과부하 개념이 보완작업량을 충분히 반영할 수 있음을 밝혔다. 본 연구에서 제시한 최적 작업순서 규칙에 의거했을 때 야기될 수 있는 여러가지 경우의 과부하를 모두 계산했다. 앞에서 개발된 단일작업량의 최적 작업순서 결정규칙을 이용하여 다작업장의 문제를 실험했다. 이 문제는 규모가 매우 크므로 Branch & Bound를 이용하였으며, 각 가지에서 과부하량이 최적인 경우만을 고려하는 휴리스틱을 택하여 실험자료를 이용하여 여러 회 반복실험을 행했다. 그리고 본 연구의 성과를 측정하기 위해 휴리스틱 기법시 소요되는 평균 CPU time 범위에서, 랜덤 작업순서에 따른 작업할당을 반복실험하여 이중 가장 좋은 해와 비교했다. 그러나 앞으로 다작업장 문제를 다룰 때, 각 작업장 작업순서들의 상관관계를 고려하여 보다 개선된 해를 구하기 위한 연구가 요구된다. 또한, 준비작업비용을 발생시키는 작업장의 작업순서결정에 대해서도 연구를 행하여, 보완작업비용과 준비비용을 고려한 GMMAL 작업순서문제를 해결하기 위한 연구가 수행되어야 할 것이다.로 이루어 져야 할 것이다.태를 보다 효율적으로 증진시킬 수 있는 대안이 마련되어져야 한다고 사료된다.$\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에도 $\ulcorner$순응$\lrcorner$과 $\ulcorner$표현$\lrcorner$
This study selected car-related mobile apps for app developers suffering from low revenue and classified car apps assisting users in driving or managing a car. A total of 697 car apps were classified into eight categories. Most apps are in four categories: car news & information (28%), locating service (23%), car rental service (15%), safe/efficient driving service (12%). The remaining categories are buying & selling, driver's communication, maintenance management, and expenses monitoring. Many apps are simple and too similar in their main functions. Only a few apps are designed to be more comprehensive and have functions in two or more categories. For the practicality of the categorization scheme, this study checked the inter-rater reliability in two tests and got 0.886 and 0.828. The result from this study suggests functions that are not implemented yet or need to be combined. Future research will focus on identifying promising car apps or designing multi-functional car apps.
In this paper, we propose an unmanned vehicle scratch detection deep learning model for car sharing services. Conventional scratch detection models consist of two steps: 1) a deep learning module for scratch detection of images before and after rental, 2) a manual matching process for finding newly generated scratches. In order to build a fully automatic scratch detection model, we propose a one-step unmanned scratch detection deep learning model. The proposed model is implemented by applying transfer learning and fine-tuning to the deep learning model that detects changes in satellite images. In the proposed car sharing service, specular reflection greatly affects the scratch detection performance since the brightness of the gloss-treated automobile surface is anisotropic and a non-expert user takes a picture with a general camera. In order to reduce detection errors caused by specular reflected light, we propose a preprocessing process for removing specular reflection components. For data taken by mobile phone cameras, the proposed system can provide high matching performance subjectively and objectively. The scores for change detection metrics such as precision, recall, F1, and kappa are 67.90%, 74.56%, 71.08%, and 70.18%, respectively.
The sharing economy service is now spreading in various fields such as accommodation, cars and bicycles. In particular, bicycle-sharing service have become very popular around the world, and since September 2015, Seoul has been providing a bicycle-sharing service called 'Ttareungi'. However, the number of bicycles is unbalanced among rental stations continuously according to the user's bicycle use. In order to solve these problems, we employed social network analysis using Ttareungi data in Seoul, Korea. We analyzed degree centrality, closeness centrality, betweenness centrality and k-core. As a result, the degree centrality was found to be closely linked with bus or subway transfer center. Closeness centrality was found to be in an unbalanced departure and arrival frequency or poor public transport proximity. Betweenness centrality means where the frequency of departure and arrival occurs frequently. Finally, the k-core analysis showed that Mapo-gu was the most important group by time zone. Therefore, the results of this study may contribute to the planning of relocation and additional installation of bike rental station in Seoul.
Kiyeon Hwang;Jaehong Park;Youngwoo Sohn;Woosung Nam;Yeonhwa Cho
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.19
no.1
/
pp.93-105
/
2024
Car-sharing is a representative model of the sharing economy, and it is a service that rents or uses a car for the necessary time without owning a car. This industry is growing due to various factors such as technological advances, increasing awareness of environmental protection, and increasing demand for solving traffic congestion problems in cities. Accordingly, there is a need for a strategic approach for companies providing car-sharing services to respond quickly to market changes in order to expand market share and differentiate services. Accordingly, this study conducted a case study on open innovation activities between Gongcar and existing rental car companies, focusing on the research question "What effects do open innovation activities between car-sharing companies and existing rental car companies cause?" As a result of the study, it was confirmed that Gongcar have (1) the ability to actively respond to market fluctuations by establishing a flexible vehicle supply chain based on demand, (2) have significantly reduced growth capital expenditure (Growth Capex), and both cafe and rental car companies have (3) performed successful open innovation by improving key KPI indicators and recording financial performance. This study reveals how open innovation acts as a key business growth engine in the car-sharing industry, and its significance is found in that it empirically confirmed the successful implementation conditions of open innovation based on resource dependence theory.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.